Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(41): 16658-16668, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37800342

ABSTRACT

Biomarkers have the potential to be utilized in disease diagnosis, prediction and monitoring. The cancer cell type is a leading candidate for next-generation biomarkers. Although traditional digital biomolecular sensor (DBS) technology has shown to be effective in assessing cell-based interactions, low cell-population detection of cancer cell types is extremely challenging. Here, we controlled the electrical signature of a two-dimensional (2D) nanomaterial, tungsten disulfide (WS2), by utilizing a combination of the Phage-integrated Polymer and the Nanosheet (PPN), viz., the integration of the M13-conjugated polyethylene glycol (PEG) and the WS2, through shape-complementarity phenomena, and developed a sensor system, i.e., the Phage-based DBS (P-DBS), for the specific, rapid, sensitive detection of clinically-relevant MCF-7 cells. The P-DBS attains a detection limit of 12 cells per µL, as well as a contrast of 1.25 between the MCF-10A sample signal and the MCF-7 sample signal. A reading length of 200 µs was further achieved, along with a relative cell viability of ∼100% for both MCF-7 and MCF-10A cells and with the PNN. Atomistic simulations reveal the structural origin of the shape complementarity-facilitated decrease in the output impedance of the P-DBS. The combination of previously unreported exotic sensing materials and digital sensor design represents an approach to unlocking the ultra-sensitive detection of cancer cell types and provides a promising avenue for early cancer diagnosis, staging and monitoring.


Subject(s)
Nanostructures , Neoplasms , Humans , MCF-7 Cells , Polyethylene Glycols , Limit of Detection , Nanostructures/chemistry , Biomarkers
2.
Pharmaceutics ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36678734

ABSTRACT

Promising results in clinical studies have been demonstrated by the utilization of electrothermal agents (ETAs) in cancer therapy. However, a difficulty arises from the balance between facilitating the degradation of ETAs, and at the same time, increasing the electrothermal performance/stability required for highly efficient treatment. In this study, we controlled the thermal signature of the MoS2 by harnessing MoS2 nanostructures with M13 phage (MNM) via the structural assembling (hydrophobic interaction) phenomena and developed a combined PANC-1 cancer cell-MNM alternating current (AC)-stimulus framework for cancer cell ablation and electrothermal therapy. A percentage decrease in the cell viability of ~23% was achieved, as well as a degradation time of 2 weeks; a stimulus length of 100 µs was also achieved. Molecular dynamics (MD) simulations revealed the assembling kinetics in integrated M13 phage-cancer cell protein systems and the structural origin of the hydrophobic interaction-enabled increase in thermal conduction. This study not only introduced an 'ideal' agent that avoided the limitations of ETAs but also provided a proof-of-concept application of MoS2-based materials in efficacious cancer therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...