Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 340
Filter
1.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1150-1158, 2024 Apr 18.
Article in Chinese | MEDLINE | ID: mdl-38884250

ABSTRACT

Functional traits are indicators of the responses and adaptation of organisms to environmental changes and cascade to a series of ecosystem functions. The functional traits of soil animals are sensitive to environmental factors and may characterize and predict the changes of ecosystem functions. Multiple dimensions of biodiversity that combing species, phylogenetic, and functional diversity improves the understanding of distribution patterns, community assembly mechanisms and ecosystem functions of soil animals. In this review, we listed the categories of soil animal functional traits and their ecological significance, and summarized current researches on the responses of soil animal communities to environmental changes and the community assembly processes based on trait-based approaches. We proposed to strengthen the study on the impacts of eco-evolution processes of biotic interactions to soil animal functional traits, establish the database of soil animal functional traits, and apply trait-based approaches in the ecological restoration in the future, which would benefit soil biodiversity conservation and sustainability of soil ecosystems.


Subject(s)
Biodiversity , Ecosystem , Soil , Animals , Conservation of Natural Resources , Ecology , Animal Distribution
2.
Mycology ; 15(2): 180-209, 2024.
Article in English | MEDLINE | ID: mdl-38813470

ABSTRACT

The order Agaricales was divided into eight suborders. However, the phylogenetic relationships among some suborders are largely unresolved, and the phylogenetic positions and delimitations of some taxa, such as Sarcomyxaceae and Tricholomopsis, remain unsettled. In this study, sequence data of 38 genomes were generated through genome skimming on an Illumina sequencing system. To anchor the systematic position of Sarcomyxaceae and Tricholomopsis, a phylogenetic analysis based on 555 single-copy orthologous genes from the aforementioned genomes and 126 publicly accessible genomes was performed. The results fully supported the clustering of Tricholomopsis with Phyllotopsis and Pleurocybella within Phyllotopsidaceae, which formed a divergent monophyletic major lineage together with Pterulaceae, Radulomycetaceae, and Macrotyphula in Agaricales. The analysis also revealed that Sarcomyxaceae formed a unique major clade. Therefore, two new suborders, Phyllotopsidineae and Sarcomyxineae, are proposed for the two major lineages. Analyses of 450 single-copy orthologous genes and four loci suggested that Tricholomopsis consisted of at least four clades. Tricholomopsis is subsequently subdivided into four distinct sections. Seventeen Tricholomopsis species in China, including six new species, are reported. Conoloma is established to accommodate T. mucronata. The substrate preference of Tricholomopsis species and the transitions of the pileate ornamentations among the species within the genus are discussed.

3.
Chem Sci ; 15(10): 3610-3615, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38455024

ABSTRACT

We report herein the synthesis of highly enantiopure inherently chiral N3,O-calix[2]arene[2]triazines from enantioselective macrocyclization enabled by chiral phosphoric acid-catalyzed intramolecular nucleophilic aromatic substitution reaction. In contrast to documented examples, the inherent chirality of the acquired compounds arises from one heteroatom difference in the linking positions of heteracalix[4](het)arenes.

4.
BioData Min ; 17(1): 6, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408995

ABSTRACT

BACKGROUND: Previous studies have shown an association between gut microbiota and cardiovascular diseases (CVDs). However, the underlying causal relationship remains unclear. This study aims to elucidate the causal relationship between gut microbiota and CVDs and to explore the pathogenic role of gut microbiota in CVDs. METHODS: In this two-sample Mendelian randomization study, we used genetic instruments from publicly available genome-wide association studies, including single-nucleotide polymorphisms (SNPs) associated with gut microbiota (n = 14,306) and CVDs (n = 2,207,591). We employed multiple statistical analysis methods, including inverse variance weighting, MR Egger, weighted median, MR pleiotropic residuals and outliers, and the leave-one-out method, to estimate the causal relationship between gut microbiota and CVDs. Additionally, we conducted multiple analyses to assess horizontal pleiotropy and heterogeneity. RESULTS: GWAS summary data were available from a pooled sample of 2,221,897 adult and adolescent participants. Our findings indicated that specific gut microbiota had either protective or detrimental effects on CVDs. Notably, Howardella (OR = 0.955, 95% CI: 0.913-0.999, P = .05), Intestinibacter (OR = 0.908, 95% CI:0.831-0.993, P = .03), Lachnospiraceae (NK4A136 group) (OR = 0.904, 95% CI:0.841-0.973, P = .007), Turicibacter (OR = 0.904, 95% CI: 0.838-0.976, P = .01), Holdemania (OR, 0.898; 95% CI: 0.810-0.995, P = .04) and Odoribacter (OR, 0.835; 95% CI: 0.710-0.993, P = .04) exhibited a protective causal effect on atrial fibrillation, while other microbiota had adverse causal effects. Similar effects were observed with respect to coronary artery disease, myocardial infarction, ischemic stroke, and hypertension. Furthermore, reversed Mendelian randomization analyses revealed that atrial fibrillation and ischemic stroke had causal effects on certain gut microbiotas. CONCLUSION: Our study underscored the importance of gut microbiota in the context of CVDs and lent support to the hypothesis that increasing the abundance of probiotics or decreasing the abundance of harmful bacterial populations may offer protection against specific CVDs. Nevertheless, further research is essential to translate these findings into clinical practice.

5.
FEBS J ; 291(10): 2221-2241, 2024 May.
Article in English | MEDLINE | ID: mdl-38400523

ABSTRACT

It was reported that the Wnt/ß-catenin pathway is involved in the regulation of aerobic glycolysis and that brain glycolytic dysfunction results in the development of Alzheimer's disease (AD). Icariin (ICA), an active component extracted from Epimedii Folium, has been reported to produce neuroprotective effects in multiple models of AD, but its underlying mechanism remains to be fully described. We aimed to investigate the protective effects of ICA on animal and cell models of AD and confirm whether the Wnt/ß-catenin pathway has functions in the neuroprotective function of ICA. The 3 × Tg-AD mice were treated with ICA. HT22 cells, the Aß25-35 peptide and Dickkopf-1 (DKK1) agent (a specific inhibitor of the Wnt/ß-catenin pathway) were used to further explore the underlying mechanism of ICA that produces anti-AD effects. Behavioral examination, western blotting assay, staining analysis, biochemical test, and lactate dehydrogenase (LDH) assays were applied. We first demonstrated that ICA significantly improved cognitive function and autonomous behavior, reduced neuronal damage, and reversed the protein levels and activities of glycolytic key enzymes, and expression of protein molecules of the canonical Wnt signaling pathway, in 3 × Tg-AD mice back to wild-type levels. Next, we further found that ICA increased cell viability and effectively improved the dysfunctional glycolysis in HT22 cells injured by Aß25-35. However, when canonical Wnt signaling was inhibited by DKK1, the above effects of ICA on glycolysis were abolished. In summary, ICA exerts neuroprotective effects in 3 × Tg-AD animals and AD cellular models by enhancing the function of glycolysis through activation of the Wnt/ß-catenin pathway.


Subject(s)
Alzheimer Disease , Disease Models, Animal , Flavonoids , Glycolysis , Mice, Transgenic , Wnt Signaling Pathway , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Wnt Signaling Pathway/drug effects , Glycolysis/drug effects , Flavonoids/pharmacology , Mice , Amyloid beta-Peptides/metabolism , beta Catenin/metabolism , beta Catenin/genetics , Neuroprotective Agents/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Peptide Fragments/metabolism , Male
6.
Gene ; 896: 148033, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38013127

ABSTRACT

In the entire world, hepatocellular carcinoma (HCC) is one of the most frequent cancers that lead to death. Experiments on the function of long non-coding RNAs in the emergence of malignancies, including HCC, are ongoing. As a crucial RNA monitoring mechanism in eucaryotic cells, nonsense-mediated mRNA decay (NMD) can recognize and destroy mRNAs, which has an premature termination codons (PTC) in the open reading frame to prevent harmful buildup of truncated protein products in the cells. Nonsense transcript regulator 1 (Up-frameshift suppressor 1, UPF1), as a highly conserved RNA helicase and ATPase, plays a key role in NMD. Our laboratory screened out the highly expressed lncRNA LINC02561 in HCC from the TCGA database. Further research found that LINC02561 enhanced the invasion and transition abilities of liver cancer cells by regulating the protein N-Myc downstream regulated 1 (NDRG1). Hypoxia inducible factor-1 (HIF-1α) can bonded to LINC02561 promoters under hypoxic conditions, thereby promoting the upregulation of LINC02561 expression in liver cancer cells. LINC02561 competes with NDRG1 mRNA to bind UPF1, thereby preventing the degradation of NDRG1 mRNA to facilitate NDRG1 protein level. Taken together, the HIF1α-LINC02561-UPF1-NDRG1 regulatory axis could be an entirely novel target of liver cancer-related treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Trans-Activators/genetics , Liver Neoplasms/genetics , RNA Helicases/genetics , RNA Helicases/metabolism , Nonsense Mediated mRNA Decay , Codon, Nonsense
7.
Scand Cardiovasc J ; 57(1): 2286885, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38010775

ABSTRACT

Objectives. Studies have shown that fasting blood glucose (FBG) is closely associated with poor prognosis in patients with coronary heart disease (CHD) after percutaneous coronary intervention (PCI), but its association with in-stent restenosis (ISR) is still unclear. Therefore, this study was to explore the association between FBG with ISR in patients with CHD after PCI. Design. In this cohort study, we included 531 patients with CHD who underwent PCI. Logistic regression, receiver operating characteristic (ROC), subgroup analysis and restricted cubic spline (RCS) were used to assess the association between FBG with ISR. Results. A total of 124 (23.4%) patients had ISR. Patients with higher levels of FBG had higher incidence of ISR compared to those with lower levels of FBG (p = 0.002). In multivariable logistic regression analyses, higher levels of FBG remained strongly associated with higher risk of ISR (as a categorical variable, OR: 1.89, 95% CI: 1.21-2.94, p = 0.005; as a continuous variable, OR: 1.12, 95% CI: 1.03-1.23, p = 0.011). ROC analysis also showed that FBG might be associated with the occurrence of ISR (AUC = 0.577, 95% CI: 0.52-0.64, p = 0.013). Subgroup analyses showed the association of FBG with ISR was also stable in several subgroups (< 60 years or ≥ 60 years, male, with or without smoking, without diabetes and without hypertension). And RCS analysis showed that FBG was linearly and positively associated with the risk of ISR. Conclusions. Higher levels of FBG were closely associated with higher risk of ISR in patients with CHD after PCI.


Subject(s)
Coronary Restenosis , Percutaneous Coronary Intervention , Humans , Male , Percutaneous Coronary Intervention/adverse effects , Cohort Studies , Blood Glucose , Coronary Restenosis/etiology , Constriction, Pathologic , Fasting , Coronary Angiography/adverse effects , Risk Factors , Retrospective Studies , Stents/adverse effects
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1352-1357, 2023.
Article in Chinese | MEDLINE | ID: mdl-37846684

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of CD19/CD3 bisecific monoclonalantibody (Blinatumomab) in the treatment of adult patients with relapsed / refractory Ph-negative acute B-lymphoblastic leukemia (R/R-B-ALL). METHODS: Ten adult R/R B-ALL patients were all treated with Blinatumomab. Each treatment cycle was administered for 28 days and stopped for 14 days. The dose was 9 µg/day for the first 7 days of cycle 1, and 28 µg/day for days 8-28 if there were no adverse reactions. From the second cycle onwards, the daily dose was 28 µg. The remission, survival time (EFS and OS) and adverse reactions were observed after treatment. RESULTS: Nine patients with curative effect could be evaluated. Four patients achieved CR after one course, and one patient achieved CR after two courses, the overall remission rate was 55.6%(5/9). The median EFS was 4 months (1-12 months), and the median OS was 6 months (2-44 months). Nine of the 10 patients had fever of different degrees. Serum levels of cytokines such as IL-6, IL-10, IL-17 and IFN-γ increased. Two patients resumed medication after 1 week of treatment interruption due to neurotoxicity and CRS, respectively. One patient was discontinued due to grade 3 CRS and died of tropical candidiaemia. CONCLUSION: Blinatumomab has a good response rate in the treatment of relapsed/refractory B-ALL patients, but the duration of remission is shorter. Drug-related adverse reactions are mainly CRS and neurotoxicity. Inflammatory factors IL-6, IL-10, IL-17 and IFN-γ can be used as indicators to monitor CRS. The bisspecificity MAbs provide an opportunity for subsequent allogeneic hematopoietic stem cell transplantation in R/R-B-ALL patients.

9.
Support Care Cancer ; 31(10): 578, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715817

ABSTRACT

PURPOSE: Children with acute leukemia have suffered from a considerable symptom burden during chemotherapy. However, few studies have focused on exploring the mechanisms among symptoms in children with acute leukemia. Our study aims to explore core symptoms and describe the interrelationships among symptoms in children with acute leukemia during chemotherapy. METHODS: From January 2021 to March 2023, 469 children with acute leukemia were recruited from 20 Chinese cities. The Memorial Symptom Assessment Scale 10-18 (MSAS 10-18) was used to evaluate the prevalence and severity of symptoms during chemotherapy. A network analysis was performed by the R software based on 31 symptoms. Centrality indices and density were used to explore core symptoms and describe interrelationships among symptoms in the network during chemotherapy. RESULTS: Worrying and feeling irritable were the central symptoms across the three centrality indices, including strength, closeness, and betweenness. Lack of energy was the most prevalent symptom; however, it was less central than other symptoms. The density of the "induction and remission" network significantly differed from other cycles' counterparts (p < 0.001). Global strength was greater in the " ≥ 8 years group " network than the " < 8 years group " network (p = 0.023). CONCLUSION: Network analysis provides a novel approach to identifying the core symptoms and understanding the interrelationships among symptoms. Our study indicates the need to assess emotional symptoms in children with acute leukemia during chemotherapy, especially during the induction and remission phases, as well as in older children. Future research is imperative to construct trajectories of dynamic symptom networks and centrality indices in longitudinal data to investigate the causal relationships among symptoms.


Subject(s)
Antineoplastic Agents , Leukemia , Child , Humans , Asian People , Emotions , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/epidemiology , Software , Antineoplastic Agents/therapeutic use , Leukemia/diagnosis , Leukemia/drug therapy , Leukemia/psychology , Acute Disease , China
10.
Front Oncol ; 13: 1236129, 2023.
Article in English | MEDLINE | ID: mdl-37671049

ABSTRACT

Background: Previous studies have examined symptom clusters in children with acute leukemia, yet a knowledge gap persists regarding central symptom clusters and their influencing factors. By identifying these central clusters and associated factors, healthcare providers can enhance their understanding and effective management of symptoms. Our study seeks to address this gap by identifying symptom clusters, exploring central clusters, and investigating the demographic and health-related factors associated with these clusters in children with acute leukemia undergoing chemotherapy. Methods: A total of 586 children with acute leukemia from January 2021 to April 2023 were recruited from China. They were investigated using Memorial Symptom Assessment Scale 10-18 during chemotherapy. The principal component analysis was used to identify the symptom clusters. An association network was conducted to describe the relationships among symptoms and clusters. A multiple linear model was used to investigate the associated factors for the severity of overall symptoms and each symptom cluster. Results: Five clusters were identified, including oral and skin cluster, somatic cluster, self-image disorder cluster, gastrointestinal cluster and psychological cluster. Gastrointestinal cluster was the most central symptom cluster. Age, sex, clinical classification, number of having chemotherapy and education degree and marital status of the primary caregiver are associated with the severity of these five symptom clusters. Conclusion: Our study highlights the importance of evaluating symptom clusters in children with acute leukemia during chemotherapy. Specifically, addressing gastrointestinal symptoms is crucial for effective symptom management and overall care.

11.
Front Aging Neurosci ; 15: 1218267, 2023.
Article in English | MEDLINE | ID: mdl-37744386

ABSTRACT

Objective: To investigate the mechanism of RNA-binding protein hnRNP A1 in mouse hippocampal neurons (HT22) on glycolysis. Methods: RIP and CLIP-qPCR were performed by HT22 in vitro to observe the mechanism of hnRNP A1 regulating the expression of key proteins in glycolysis. The RNA binding domain of hnRNP A1 protein in HT22 was inhibited by VPC-80051, and the effect of hnRNP A1 on glycolysis of HT22 was observed. Lentivirus overexpression of hnRNP A1 was used to observe the effect of overexpression of hnRNP A1 on glycolysis of Aß25-35-injured HT22. The expression of hnRNP A1 in brain tissues of wild-type mice and triple-transgenic (APP/PS1/Tau) AD mice at different ages was studied by Western blot assay. Results: The results of RIP experiment showed that hnRNP A1 and HK1 mRNA were significantly bound. The results of CLIP-qPCR showed that hnRNP A1 directly bound to the 2605-2821 region of HK1 mRNA. hnRNP A1 inhibitor can down-regulate the expression of HK1 mRNA and HK1 protein in HT22 cells. Overexpression of hnRNP A1 can significantly reduce the toxic effect of Aß25-35 on neurons via the hnRNP A1/HK1/ pyruvate pathway. In addition, inhibition of hnRNP A1 binding to amyloid precursor protein (APP) RNA was found to increase Aß expression, while Aß25-35 also down-regulated hnRNP A1 expression by enhancing phosphorylation of p38 MAPK in HT22. They interact to form bidirectional regulation, further down-regulating the expression of hnRNP A1, and ultimately aggravating glycolytic dysfunction. Protein immunoblotting showed that hnRNP A1 decreased with age in mouse brain tissue, and the decrease was greater in AD mice, suggesting that the decrease of hnRNP A1 may be a predisposed factor in the pathogenesis of AD.

12.
Chem Sci ; 14(31): 8393-8400, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37564407

ABSTRACT

In contrast to a plethora of macrocyclic and cage compounds, spirophanes have remained largely unexplored. We report herein the construction, structure and properties of unprecedented tetrahomo corona[4]arene-based ditopic and tritopic macrocycles of spiro structures. Synthesis was conveniently achieved by means of an efficient SNAr reaction from simple and commercially available starting materials. Racemic samples were resolved into enantiopure chiral tetrahomo i-corona[4]arenes, spirophanes and bispirophanes which show interesting chiroptical properties. The acquired electron-deficient macrocyclic compounds were found to adopt unique conformational structures and to form distinct complexes with TTF in the solid state. Our study provides a new opportunity to develop multitopic macrocycles of different topologies which have potential applications in supramolecular chemistry.

13.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(4): 992-998, 2023 Aug.
Article in Chinese | MEDLINE | ID: mdl-37551467

ABSTRACT

OBJECTIVE: To detect the gene mutations in patients with myeloid malignancies by high-throughput sequencing and explore the correlation between gene mutations and prognosis. METHODS: A retrospective analysis was performed on 56 patients with myeloid malignancies who were hospitalized in the department of hematology, Peking University International Hospital from January 2020 to May 2021. The genetic mutations of the patients were detected by next-generation sequencing technology, and the correlation between the genetic mutations and prognosis of myeloid malignancies was analyzed. RESULTS: In 56 patients, the number of mutated genes detected in a single patient is 0-9, with a median of 3. Sequencing results showed that the most common mutated genes were RUNX1(21.4%), TET2(17.9%), DNMT3A(17.9%), TP53(14.3%) and ASXL1(14.3%), among which the most common mutations occurred in the signaling pathway-related genes (23.3%) and the transcription factor genes (18.3%). 84% of the patients carried multiple mutated genes (≥2), and correlation analysis showed there were obvious co-occurring mutations between WT1 and FLT3, NPM1 and FLT3-ITD, and MYC and FLT3. TP53 mutation was more common in MDS patients.The overall survival time of patients with NRAS mutation was significantly shortened (P =0.049). The prognosis of patients with TP53 mutation was poor compared with those without TP53 mutation, but the difference wasn't statistically significant (P =0.08). CONCLUSION: The application of next-generation sequencing technology is of great significance in myeloid malignancies, which is helpful to better understand the pathogenesis of the disease, to judge the prognosis and to find possible therapeutic targets.


Subject(s)
Leukemia, Myeloid, Acute , Myeloproliferative Disorders , Humans , Leukemia, Myeloid, Acute/genetics , Nucleophosmin , Prognosis , Retrospective Studies , High-Throughput Nucleotide Sequencing , Mutation
14.
Zool Res ; 44(5): 905-918, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37575045

ABSTRACT

Previous studies have shown that Vibrio splendidus infection causes mitochondrial damage in Apostichopus japonicus coelomocytes, leading to the production of excessive reactive oxygen species (ROS) and irreversible apoptotic cell death. Emerging evidence suggests that mitochondrial autophagy (mitophagy) is the most effective method for eliminating damaged mitochondria and ROS, with choline dehydrogenase (CHDH) identified as a novel mitophagy receptor that can recognize non-ubiquitin damage signals and microtubule-associated protein 1 light chain 3 (LC3) in vertebrates. However, the functional role of CHDH in invertebrates is largely unknown. In this study, we observed a significant increase in the mRNA and protein expression levels of A. japonicus CHDH (AjCHDH) in response to V. splendidus infection and lipopolysaccharide (LPS) challenge, consistent with changes in mitophagy under the same conditions. Notably, AjCHDH was localized to the mitochondria rather than the cytosol following V. splendidus infection. Moreover, AjCHDH knockdown using siRNA transfection significantly reduced mitophagy levels, as observed through transmission electron microscopy and confocal microscopy. Further investigation into the molecular mechanisms underlying CHDH-regulated mitophagy showed that AjCHDH lacked an LC3-interacting region (LIR) for direct binding to LC3 but possessed a FB1 structural domain that binds to SQSTM1. The interaction between AjCHDH and SQSTM1 was further confirmed by immunoprecipitation analysis. Furthermore, laser confocal microscopy indicated that SQSTM1 and LC3 were recruited by AjCHDH in coelomocytes and HEK293T cells. In contrast, AjCHDH interference hindered SQSTM1 and LC3 recruitment to the mitochondria, a critical step in damaged mitochondrial degradation. Thus, AjCHDH interference led to a significant increase in both mitochondrial and intracellular ROS, followed by increased apoptosis and decreased coelomocyte survival. Collectively, these findings indicate that AjCHDH-mediated mitophagy plays a crucial role in coelomocyte survival in A. japonicus following V. splendidus infection.


Subject(s)
Stichopus , Vibrio Infections , Animals , Choline Dehydrogenase/metabolism , HEK293 Cells , Mitophagy/genetics , Reactive Oxygen Species/metabolism , Sequestosome-1 Protein/metabolism , Stichopus/metabolism , Vibrio Infections/veterinary
15.
Org Lett ; 25(27): 5105-5110, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37383012

ABSTRACT

Despite their interesting stereochemistry and potential applications in (supramolecular) chemistry and chiroptical materials, inherently chiral macrocyclic compounds remain rare and are largely unexplored. We report herein a fragment coupling method to construct ABAC- and ABCD-type inherently chiral heteracalix[4]aromatics. The synthesis involves SNAr CuI-catalyzed Ullmann coupling and aliphatic nucleophilic substitution reactions as key steps using readily available starting materials. Postmacrocyclization functionalization reactions enabled the production of amino-substituted and (benzo[d])imidazole-2-(thi)one-bearing heteracalix[4]aromatics. Enantiopure ABCD-type macrocycles were obtained from resolution.


Subject(s)
Macrocyclic Compounds , Molecular Structure , Stereoisomerism , Calixarenes/chemistry
16.
Org Lett ; 25(21): 3936-3940, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37219082

ABSTRACT

Asymmetric synthesis of enantioenriched zigzag-type molecular belts featuring copper/H8-binaphthol-catalyzed kinetic resolution of a resorcinarene derivative and subsequent transformations was developed. The acquired rigid and C4-symmetric belt exhibited remarkably enhanced photophysical and chiroptical properties in comparison to its conformationally fluxional macrocyclic precursor.

17.
Angew Chem Int Ed Engl ; 62(24): e202302646, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37088714

ABSTRACT

Hydrocarbon belts have drawn great attention because of their unique structures and tantalizing properties. Although a few belts and heteroatom-doped analogs have been synthesized, belt molecules containing non-hexagonal rings remain rare. Herein we report the construction and application of unprecedented zigzag-type hydrocarbon belts which contain functionalized eight-membered rings. The synthesis features fourfold intramolecular acylation reactions of resorcin[4]arene-derived intermediates, which affords C4 -symmetric tetrabenzobelt[4]arene[4]cyclooctatrienones. Stereoselective ketone reduction with LiAlH4 and nucleophilic addition with alkynyllithiums provide the corresponding tetrahydroxylated belts. The tetraol and its methyl ether are powerful and selective hosts to form 2 : 1 and 1 : 1 complexes with cesium ion, respectively, with binding constants up to (1.71±0.33)×1011  M-2 and (1.50±0.16)×106  M-1 . In addition, enantiopure C4 -symmetric belts can emit CPL with |glum | being around 0.01.

18.
Chem Sci ; 14(4): 827-832, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36755707

ABSTRACT

Under the catalysis of PdBr2 and a chiral phosphoramidite ligand, the upper-rim mono (2-bromoaroyl)-substituted calix[4]arene derivatives underwent a facile enantioselective desymmetrization reaction to afford 9H-fluorene-embedded inherently chiral calixarenes in good yields with excellent enantioselectivities. The transannular dehydrogenative arene-arene coupling reaction proceeded most probably through an oxidative addition of the Caryl-Br bond to a ligated palladium catalyst followed by a sequence of an enantioselective 1,5-palladium migration and an intramolecular C-H arylation sequence. This new family of inherently chiral calixarenes possesses unique chiroptical properties thanks to their highly rigid structure induced by the 9H-fluorene segment.

19.
Angew Chem Int Ed Engl ; 62(15): e202301782, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36808689

ABSTRACT

Herein we report a two-directional cyclization strategy for the synthesis of highly strained depth-expanded oxygen-doped chiral molecular belts of the zigzag-type. From the easily accessible resorcin[4]arenes, an unprecedented cyclization cascade generating fused 2,3-dihydro-1H-phenalenes has been developed to access expanded molecular belts. Stitching up the fjords through intramolecular nucleophilic aromatic substitution and ring-closing olefin metathesis reactions furnished a highly strained O-doped C2 -symmetric belt. The enantiomers of the acquired compounds exhibited excellent chiroptical properties. The calculated parallelly aligned electric (µ) and magnetic (m) transition dipole moments are translated to the high dissymmetry factor (|glum | up to 0.022). This study provides not only an appealing and useful strategy for the synthesis of strained molecular belts but also a new paradigm for the fabrication of belt-derived chiroptical materials with high CPL activities.

20.
Insects ; 14(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36662000

ABSTRACT

Plutella xylostella is a typical phototactic pest. LW-opsin contributes to the phototaxis of P. xylostella, but the expression changes of other genes in the phototransduction pathway caused by the mutation of LW-opsin remain unknown. In the study, the head transcriptomes of male G88 and LW-opsin mutants were compared. A GO-function annotation showed that DEGs mainly belonged to the categories of molecular functions, biological processes, and cell composition. Additionally, a KEGG-pathway analysis suggested that DEGs were significantly enriched in some classical pathways, such as the phototransduction-fly and vitamin digestion and absorption pathways. The mRNA expressions of genes in the phototransduction-fly pathway, such as Gq, ninaC, and rdgC were significantly up-regulated, and trp, trpl, inaD, cry1, ninaA and arr1 were significantly down-regulated. The expression trends of nine DEGs in the phototransduction pathway confirmed by a RT-qPCR were consistent with transcriptomic data. In addition, the influence of a cry1 mutation on the phototaxis of P. xylostella was examined, and the results showed that the male cry1 mutant exhibited higher phototactic rates to UV and blue lights than the male G88. Our results indicated that the LW-opsin mutation changed the expression of genes in the phototransduction pathway, and the mutation of cry1 enhanced the phototaxis of a P. xylostella male, providing a basis for further investigation on the phototransduction pathway in P. xylostella.

SELECTION OF CITATIONS
SEARCH DETAIL
...