Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38673915

ABSTRACT

Parkinson's disease (PD) is a chronic, age-related, progressive multisystem disease associated with neuroinflammation and immune dysfunction. This review discusses the methodological approaches used to study the changes in central and peripheral immunity in PD, the advantages and limitations of the techniques, and their applicability to humans. Although a single animal model cannot replicate all pathological features of the human disease, neuroinflammation is present in most animal models of PD and plays a critical role in understanding the involvement of the immune system (IS) in the pathogenesis of PD. The IS and its interactions with different cell types in the central nervous system (CNS) play an important role in the pathogenesis of PD. Even though culture models do not fully reflect the complexity of disease progression, they are limited in their ability to mimic long-term effects and need validation through in vivo studies. They are an indispensable tool for understanding the interplay between the IS and the pathogenesis of this disease. Understanding the immune-mediated mechanisms may lead to potential therapeutic targets for the treatment of PD. We believe that the development of methodological guidelines for experiments with animal models and PD patients is crucial to ensure the validity and consistency of the results.


Subject(s)
Disease Models, Animal , Parkinson Disease , Parkinson Disease/immunology , Parkinson Disease/pathology , Parkinson Disease/etiology , Animals , Humans , Immune System/immunology , Immune System/metabolism , Neuroinflammatory Diseases/immunology , Neuroinflammatory Diseases/etiology , Neuroinflammatory Diseases/pathology
2.
Front Physiol ; 14: 1317031, 2023.
Article in English | MEDLINE | ID: mdl-38028765
3.
Elife ; 122023 04 03.
Article in English | MEDLINE | ID: mdl-37010951

ABSTRACT

Secreted semaphorin 3F (Sema3F) and semaphorin 3A (Sema3A) exhibit remarkably distinct effects on deep layer excitatory cortical pyramidal neurons; Sema3F mediates dendritic spine pruning, whereas Sema3A promotes the elaboration of basal dendrites. Sema3F and Sema3A signal through distinct holoreceptors that include neuropilin-2 (Nrp2)/plexinA3 (PlexA3) and neuropilin-1 (Nrp1)/PlexA4, respectively. We find that Nrp2 and Nrp1 are S-palmitoylated in cortical neurons and that palmitoylation of select Nrp2 cysteines is required for its proper subcellular localization, cell surface clustering, and also for Sema3F/Nrp2-dependent dendritic spine pruning in cortical neurons, both in vitro and in vivo. Moreover, we show that the palmitoyl acyltransferase ZDHHC15 is required for Nrp2 palmitoylation and Sema3F/Nrp2-dependent dendritic spine pruning, but it is dispensable for Nrp1 palmitoylation and Sema3A/Nrp1-dependent basal dendritic elaboration. Therefore, palmitoyl acyltransferase-substrate specificity is essential for establishing compartmentalized neuronal structure and functional responses to extrinsic guidance cues.


Subject(s)
Semaphorins , Semaphorins/metabolism , Semaphorin-3A/metabolism , Neuropilin-2/genetics , Neuropilin-2/metabolism , Lipoylation , Neurons/metabolism , Neuropilin-1/genetics , Neuropilin-1/metabolism
4.
Int J Mol Sci ; 23(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36430497

ABSTRACT

The relationship between Parkinson's disease (PD), the second-most common neurodegenerative disease after Alzheimer's disease, and palmitoylation, a post-translational lipid modification, is not well understood. In this study, to better understand the role of protein palmitoylation in PD and the pathways altered in this disease, we analyzed the differential palmitoyl proteome (palmitome) in the cerebral cortex of PD patients compared to controls (n = 4 per group). Data-mining of the cortical palmitome from PD patients and controls allowed us to: (i) detect a set of 150 proteins with altered palmitoylation in PD subjects in comparison with controls; (ii) describe the biological pathways and targets predicted to be altered by these palmitoylation changes; and (iii) depict the overlap between the differential palmitome identified in our study with protein interactomes of the PD-linked proteins α-synuclein, LRRK2, DJ-1, PINK1, GBA and UCHL1. In summary, we partially characterized the altered palmitome in the cortex of PD patients, which is predicted to impact cytoskeleton, mitochondrial and fibrinogen functions, as well as cell survival. Our study suggests that protein palmitoylation could have a role in the pathophysiology of PD, and that comprehensive palmitoyl-proteomics offers a powerful approach for elucidating novel cellular pathways modulated in this neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Lipoylation , Neurodegenerative Diseases/metabolism , Cerebral Cortex/metabolism , Mitochondria/metabolism
5.
Biomolecules ; 12(7)2022 06 23.
Article in English | MEDLINE | ID: mdl-35883428

ABSTRACT

Synechococcus sp. PCC 11901 reportedly demonstrates the highest, most sustained growth of any known cyanobacterium under optimized conditions. Due to its recent discovery, our knowledge of its biology, including the factors underlying sustained, fast growth, is limited. Furthermore, tools specific for genetic manipulation of PCC 11901 are not established. Here, we demonstrate that PCC 11901 shows faster growth than other model cyanobacteria, including the fast-growing species Synechococcuselongatus UTEX 2973, under optimal growth conditions for UTEX 2973. Comparative genomics between PCC 11901 and Synechocystis sp. PCC 6803 reveal conservation of most metabolic pathways but PCC 11901 has a simplified electron transport chain and reduced light harvesting complex. This may underlie its superior light use, reduced photoinhibition, and higher photosynthetic and respiratory rates. To aid biotechnology applications, we developed a vitamin B12 auxotrophic mutant but were unable to generate unmarked knockouts using two negative selectable markers, suggesting that recombinase- or CRISPR-based approaches may be required for repeated genetic manipulation. Overall, this study establishes PCC 11901 as one of the most promising species currently available for cyanobacterial biotechnology and provides a useful set of bioinformatics tools and strains for advancing this field, in addition to insights into the factors underlying its fast growth phenotype.


Subject(s)
Synechococcus , Synechocystis , Biotechnology , Metabolic Networks and Pathways , Photosynthesis , Synechococcus/genetics , Synechococcus/metabolism , Synechocystis/genetics
6.
Transl Psychiatry ; 11(1): 65, 2021 01 18.
Article in English | MEDLINE | ID: mdl-33462194

ABSTRACT

Novelty-seeking behaviors and impulsivity are personality traits associated with several psychiatric illnesses including attention deficits hyperactivity disorders. The underlying neural mechanisms remain poorly understood. We produced and characterized a line of knockout mice for zdhhc15, which encodes a neural palmitoyltransferase. Genetic defects of zdhhc15 were implicated in intellectual disability and behavioral anomalies in humans. Zdhhc15-KO mice showed normal spatial learning and working memory but exhibited a significant increase in novelty-induced locomotion in open field. Striatal dopamine content was reduced but extracellular dopamine levels were increased during the habituation phase to a novel environment. Administration of amphetamine and methylphenidate resulted in a significant increase in locomotion and extracellular dopamine levels in the ventral striatum of mutant mice compared to controls. Number and projections of dopaminergic neurons in the nigrostriatal and mesolimbic pathways were normal. No significant change in the basal palmitoylation of known ZDHHC15 substrates including DAT was detected in striatum of zdhhc15 KO mice using an acyl-biotin exchange assay. These results support that a transient, reversible, and novelty-induced elevation of extracellular dopamine in ventral striatum contributes to novelty-seeking behaviors in rodents and implicate ZDHHC15-mediated palmitoylation as a novel regulatory mechanism of dopamine in the striatum.


Subject(s)
Amphetamine , Dopamine , Amphetamine/pharmacology , Animals , Corpus Striatum/metabolism , Dopamine Plasma Membrane Transport Proteins/genetics , Dopamine Plasma Membrane Transport Proteins/metabolism , Locomotion , Mice , Mice, Knockout
7.
Front Oncol ; 10: 602217, 2020.
Article in English | MEDLINE | ID: mdl-33330101

ABSTRACT

Neural stem cells (NSCs) persist in the adult mammalian brain in two neurogenic regions: the subventricular zone lining the lateral ventricles and the dentate gyrus of the hippocampus. Compelling evidence suggests that NSCs of the subventricular zone could be the cell type of origin of glioblastoma, the most devastating brain tumor. Studies in glioblastoma patients revealed that NSCs of the tumor-free subventricular zone, harbor cancer-driver mutations that were found in the tumor cells but were not present in normal cortical tissue. Endogenous mutagenesis can also take place in hippocampal NSCs. However, to date, no conclusive studies have linked hippocampal mutations with glioblastoma development. In addition, glioblastoma cells often invade or are closely located to the subventricular zone, whereas they do not tend to infiltrate into the hippocampus. In this review we will analyze possible causes by which subventricular zone NSCs might be more susceptible to malignant transformation than their hippocampal counterparts. Cellular and molecular differences between the two neurogenic niches, as well as genotypic and phenotypic characteristics of their respective NSCs will be discussed regarding why the cell type originating glioblastoma brain tumors has been linked mainly to subventricular zone, but not to hippocampal NSCs.

8.
BioDrugs ; 34(4): 435-462, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32301049

ABSTRACT

To interfere with cell function, many scientists rely on methods that target DNA or RNA due to the ease with which they can be applied. Proteins are usually the final executors of function but are targeted only indirectly by these methods. Recent advances in targeted degradation of proteins based on proteolysis-targeting chimaeras (PROTACs), ubiquibodies, deGradFP (degrade Green Fluorescent Protein) and other approaches have demonstrated the potential of interfering directly at the protein level for research and therapy. Proteins can be targeted directly and very specifically by antibodies, but using antibodies inside cells has so far been considered to be challenging. However, it is possible to deliver antibodies or other proteins into the cytosol using standard laboratory equipment. Physical methods such as electroporation have been demonstrated to be efficient and validated thoroughly over time. The expression of intracellular antibodies (intrabodies) inside cells is another way to interfere with intracellular targets at the protein level. Methodological strategies to target the inside of cells with antibodies, including delivered antibodies and expressed antibodies, as well as applications in the research areas of neurobiology, viral infections and oncology, are reviewed here. Antibodies have already been used to interfere with a wide range of intracellular targets. Disease-related targets included proteins associated with neurodegenerative diseases such as Parkinson's disease (α-synuclein), Alzheimer's disease (amyloid-ß) or Huntington's disease (mutant huntingtin [mHtt]). The applications of intrabodies in the context of viral infections include targeting proteins associated with HIV (e.g. HIV1-TAT, Rev, Vif, gp41, gp120, gp160) and different oncoviruses such as human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV) and Epstein-Barr virus, and they have been used to interfere with various targets related to different processes in cancer, including oncogenic pathways, proliferation, cell cycle, apoptosis, metastasis, angiogenesis or neo-antigens (e.g. p53, human epidermal growth factor receptor-2 [HER2], signal transducer and activator of transcription 3 [STAT3], RAS-related RHO-GTPase B (RHOB), cortactin, vascular endothelial growth factor receptor 2 [VEGFR2], Ras, Bcr-Abl). Interfering at the protein level allows questions to be addressed that may remain unanswered using alternative methods. This review addresses why direct targeting of proteins allows unique insights, what is currently feasible in vitro, and how this relates to potential therapeutic applications.


Subject(s)
Antibodies/chemistry , Epstein-Barr Virus Infections , Herpesvirus 4, Human/chemistry , Neurobiology , Antibodies/administration & dosage , Humans , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism
9.
Neurobiol Dis ; 132: 104602, 2019 12.
Article in English | MEDLINE | ID: mdl-31476380

ABSTRACT

Cerebellar Purkinje cell (PC) loss is a consistent pathological finding in autism. However, neural mechanisms of PC-dysfunction in autism remain poorly characterized. Glutamate receptor interacting proteins 1/2 (Grip1/2) regulate AMPA receptor (AMPAR) trafficking and synaptic strength. To evaluate role of PC-AMPAR signaling in autism, we produced PC-specific Grip1/2 knockout mice by crossing Grip2 conventional and Grip1 conditional KO with L7-Cre driver mice. PCs in the mutant mice showed normal morphology and number, and a lack of Grip1/2 expression. Rodent behavioral testing identified normal ambulation, anxiety, social interaction, and an increase in repetitive self-grooming. Electrophysiology studies revealed normal mEPSCs but an impaired mGluR-LTD at the Parallel Fiber-PC synapses. Immunoblots showed increased expression of mGluR5 and Arc, and enhanced phosphorylation of P38 and AKT in cerebellum of PC-specific Grip1/2 knockout mice. Results indicate that loss of Grip1/2 in PCs contributes to increased repetitive self-grooming, a core autism behavior in mice. Results support a role of AMPAR trafficking defects in PCs and disturbances of mGluR5 signaling in cerebellum in the pathogenesis of repetitive behaviors.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Grooming/physiology , Intracellular Signaling Peptides and Proteins/deficiency , Nerve Tissue Proteins/deficiency , Purkinje Cells/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Animals , Autistic Disorder/metabolism , Excitatory Postsynaptic Potentials/physiology , Mice , Mice, Knockout , Protein Transport/physiology , Receptors, AMPA/metabolism , Signal Transduction/physiology
10.
Behav Brain Res ; 321: 176-184, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28063882

ABSTRACT

Glutamate receptor interacting proteins 1 and 2 (GRIP1/2) play an important role in regulating synaptic trafficking of AMPA receptor 2/3 (GluA2/3) and synaptic strength. Gain-of-function GRIP1 mutations are implicated in social behavioral deficits in autism. To study mechanisms of Grip1/2-mediated AMPA signaling in the regulation of social behaviors, we performed social behavioral testing on neuron-specific Grip1/2-double knockout (DKO) and wild type (WT) mice that are matched for age, sex, and strain background. We determined the expression profile of key signaling proteins in AMPAR, mGluR, mTOR, and GABA pathways in frontal cortex, striatum, and cerebellum of DKO mice. Compared to WT mice, DKO mice show increased sociability in a modified three-chamber social behavioral test [mean±sem for interaction time in seconds; WT: 44.0±5.0; n=10; DKO: 81.0±9.0; n=9; two factor repeated measures ANOVA: F(1,37)=14.45; p<0.01 and planned t-test; p<0.01] and in a dyadic male-male social interaction test (mean±sem for total time in seconds: sniffing, WT-WT, 18.9±1.1; WT-DKO, 42.5±2.1; t-test: p<0.001; following, WT-WT, 7.7±0.72; WT-DKO,14.4±1.8; t-test: p<0.001). Immunoblot studies identified an increase in phosphorylation at GluA2-Serine 880 (GluA2-pS880) in frontal cortex (mean±sem; WT: 0.69±0.06, n=5; DKO: 0.96±0.06, n=6; t-test; p<0.05) and reduced GABAß3 expression in striatum (mean±sem; WT: 1.16±0.04, n=4; DKO: 0.95±0.06, n=4; t-test; p<0.05) in DKO mice. GluA2-S880 phosphorylation is known to regulate GluA2synaptic recycling, AMPA signaling strength and plasticity. GABAß3 has been implicated in the etiology and pathogenesis in autism. These data support an important role of Grip1/2-mediated AMPA signaling in regulating social behaviors and disturbance of glutamate- and GABA-signaling in specialized brain regions in autism-related social behavioral deficits.


Subject(s)
Adaptor Proteins, Signal Transducing/deficiency , Nerve Tissue Proteins/deficiency , Neurons/metabolism , Receptors, AMPA/metabolism , Social Behavior , Adaptor Proteins, Signal Transducing/genetics , Animals , Autism Spectrum Disorder , Carrier Proteins/genetics , Corpus Striatum/metabolism , Corpus Striatum/pathology , Frontal Lobe/metabolism , Frontal Lobe/pathology , Intracellular Signaling Peptides and Proteins , Male , Mice, Knockout , Nerve Tissue Proteins/genetics , Neurons/pathology , Phenotype , Phosphorylation , Receptors, GABA/metabolism , Receptors, Metabotropic Glutamate/metabolism , TOR Serine-Threonine Kinases/metabolism
11.
Dis Model Mech ; 7(4): 471-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24504412

ABSTRACT

The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.


Subject(s)
Muscle Denervation , Muscular Atrophy/enzymology , Muscular Atrophy/pathology , Myostatin/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , TOR Serine-Threonine Kinases/metabolism , Activin Receptors, Type II/metabolism , Animals , Autophagy/drug effects , Biomarkers/metabolism , Enzyme Activation/drug effects , Male , Mice , Myostatin/metabolism , Phenotype , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , Transforming Growth Factor beta/metabolism , Up-Regulation/drug effects
12.
Exp Neurol ; 247: 392-401, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23333568

ABSTRACT

Skeletal muscle atrophy is a very common clinical challenge in many disuse conditions. Maintenance of muscle mass is crucial to combat debilitating functional consequences evoked from these clinical conditions. In contrast, hibernation represents a physiological state in which there is natural protection against disuse atrophy despite prolonged periods of immobilization and lack of nutrient intake. Even though peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1-α (PGC-1α) is a central mediator in muscle remodeling pathways, its role in the preservation of skeletal muscle mass during hibernation remains unclear. Since PGC-1α regulates muscle fiber type formation and mitochondrial biogenesis, we analyzed muscles of 13-lined ground squirrels. We find that animals in torpor exhibit a shift to slow-twitch Type I muscle fibers. This switch is accompanied by activation of the PGC-1α-mediated endurance exercise pathway. In addition, we observe increased antioxidant capacity without evidence of oxidative stress, a marked decline in apoptotic susceptibility, and enhanced mitochondrial abundance and metabolism. These results show that activation of the endurance exercise pathway can be achieved in vivo despite prolonged periods of immobilization, and therefore might be an important mechanism for skeletal muscle preservation during hibernation. This PGC-1α regulated pathway may be a potential therapeutic target promoting skeletal muscle homeostasis and oxidative balance to prevent muscle loss in a variety of inherited and acquired neuromuscular disease conditions.


Subject(s)
Gene Expression Regulation/physiology , Hibernation , Immobilization , Muscle, Skeletal/physiology , Physical Conditioning, Animal , Physical Endurance/physiology , Animals , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle Proteins/metabolism , Oxidative Stress/physiology , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Sciuridae , Signal Transduction/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
13.
EMBO Mol Med ; 5(1): 80-91, 2013 01.
Article in English | MEDLINE | ID: mdl-23161797

ABSTRACT

Maintaining skeletal muscle mass is essential for general health and prevention of disease progression in various neuromuscular conditions. Currently, no treatments are available to prevent progressive loss of muscle mass in any of these conditions. Hibernating mammals are protected from muscle atrophy despite prolonged periods of immobilization and starvation. Here, we describe a mechanism underlying muscle preservation and translate it to non-hibernating mammals. Although Akt has an established role in skeletal muscle homeostasis, we find that serum- and glucocorticoid-inducible kinase 1 (SGK1) regulates muscle mass maintenance via downregulation of proteolysis and autophagy as well as increased protein synthesis during hibernation. We demonstrate that SGK1 is critical for the maintenance of skeletal muscle homeostasis and function in non-hibernating mammals in normal and atrophic conditions such as starvation and immobilization. Our results identify a novel therapeutic target to combat loss of skeletal muscle mass associated with muscle degeneration and atrophy.


Subject(s)
Immediate-Early Proteins/metabolism , Muscle, Skeletal/enzymology , Muscular Atrophy/prevention & control , Protein Serine-Threonine Kinases/metabolism , Animals , Base Sequence , DNA Primers/genetics , Enzyme Activation , Female , Forkhead Transcription Factors/antagonists & inhibitors , Hibernation/physiology , Homeostasis , Immediate-Early Proteins/genetics , Male , Mice , Mice, Transgenic , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-akt/metabolism , Sciuridae , Signal Transduction , Starvation/enzymology , Starvation/pathology , TOR Serine-Threonine Kinases/metabolism
14.
PLoS One ; 7(11): e48884, 2012.
Article in English | MEDLINE | ID: mdl-23155423

ABSTRACT

Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.


Subject(s)
Hibernation/physiology , Muscle, Skeletal/physiology , Regeneration/physiology , Sciuridae/physiology , Animals , Fibrosis , MAP Kinase Signaling System/physiology , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/physiopathology , Myostatin/metabolism , Wnt Signaling Pathway/physiology
15.
Behav Brain Res ; 229(1): 265-72, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22285418

ABSTRACT

Glutamate signaling has been implicated in the regulation of social behavior. AMPA-glutamate receptors are assembled from four subunits (GluA1-4) of mainly GluA1/2 and GluA2/3 tetramers that form ion channels of distinct functional properties. Mice lacking GluA1 showed a reduced anxiety and male aggression. To understand the role of GluA3 in modulating social behavior, we investigated GluA3-deficient mice (Gria3-/Y) on C57BL/6J background. Compared to wild type (WT) littermates (n=14), Gria3-/Y mice (n=13) showed an increase in isolation-induced male aggression (p=0.011) in home cage resident-intruder test; an increase in sociability (p=0.01), and increase in male-male social interactions in neutral arena (p=0.005); an increase in peripheral activities in open field test (p=0.037) with normal anxiety levels in elevated plus maze and light-dark box; and minor deficits in motor and balance function in accelerating rotarod test (p=0.016) with normal grip strength. Gria3-/Y mice showed no significant deficit in spatial memory function in Morris-water maze and Y-maze tests, and normal levels of testosterone. Increased dopamine concentrations in stratum (p=0.034) and reduced serotonin turnover in olfactory bulb (p=0.002) were documented in Gria3-/Y mice. These results support a role of GluA3 in the modulation of social behavior through brain dopamine and/or serotonin signaling and different AMPA receptor subunits affect social behavior through distinct mechanisms.


Subject(s)
Aggression/physiology , Corpus Striatum/metabolism , Dopamine/metabolism , Receptors, AMPA/deficiency , Social Behavior , 3,4-Dihydroxyphenylacetic Acid/metabolism , Analysis of Variance , Animals , Anxiety/genetics , Anxiety/physiopathology , Dark Adaptation/genetics , Exploratory Behavior/physiology , Hand Strength/physiology , Homovanillic Acid/metabolism , Male , Maze Learning/physiology , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reaction Time/genetics , Smell/genetics , Space Perception/physiology , Testosterone/blood
16.
Sci Transl Med ; 3(82): 82ra37, 2011 May 11.
Article in English | MEDLINE | ID: mdl-21562229

ABSTRACT

Sarcopenia, a critical loss of muscle mass and function because of the physiological process of aging, contributes to disability and mortality in older adults. It increases the incidence of pathologic fractures, causing prolonged periods of hospitalization and rehabilitation. The molecular mechanisms underlying sarcopenia are poorly understood, but recent evidence suggests that increased transforming growth factor-ß (TGF-ß) signaling contributes to impaired satellite cell function and muscle repair in aged skeletal muscle. We therefore evaluated whether antagonism of TGF-ß signaling via losartan, an angiotensin II receptor antagonist commonly used to treat high blood pressure, had a beneficial impact on the muscle remodeling process of sarcopenic mice. We demonstrated that mice treated with losartan developed significantly less fibrosis and exhibited improved in vivo muscle function after cardiotoxin-induced injury. We found that losartan not only blunted the canonical TGF-ß signaling cascade but also modulated the noncanonical TGF-ß mitogen-activated protein kinase pathway. We next assessed whether losartan was able to combat disuse atrophy in aged mice that were subjected to hindlimb immobilization. We showed that immobilized mice treated with losartan were protected against loss of muscle mass. Unexpectedly, this protective mechanism was not mediated by TGF-ß signaling but was due to an increased activation of the insulin-like growth factor 1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. Thus, blockade of the AT1 (angiotensin II type I) receptor improved muscle remodeling and protected against disuse atrophy by differentially regulating the TGF-ß and IGF-1/Akt/mTOR signaling cascades, two pathways critical for skeletal muscle homeostasis. Thus, losartan, a Food and Drug Administration-approved drug, may prove to have clinical benefits to combat injury-related muscle remodeling and provide protection against disuse atrophy in humans with sarcopenia.


Subject(s)
Losartan/pharmacology , Muscle, Skeletal/drug effects , Muscular Disorders, Atrophic/complications , Muscular Disorders, Atrophic/prevention & control , Sarcopenia/complications , Sarcopenia/prevention & control , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Animals , Insulin-Like Growth Factor I/metabolism , Losartan/therapeutic use , Male , Mice , Mice, Inbred C57BL , Muscle, Skeletal/pathology , Muscular Disorders, Atrophic/drug therapy , Muscular Disorders, Atrophic/pathology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, Angiotensin, Type 1/metabolism , Sarcopenia/drug therapy , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transforming Growth Factor beta/metabolism
17.
Proc Natl Acad Sci U S A ; 108(12): 4920-5, 2011 Mar 22.
Article in English | MEDLINE | ID: mdl-21383172

ABSTRACT

Glutamate receptor interacting protein 1 (GRIP1) is a neuronal scaffolding protein that interacts directly with the C termini of glutamate receptors 2/3 (GluA2/3) via its PDZ domains 4 to 6 (PDZ4-6). We found an association (P<0.05) of a SNP within the PDZ4-6 genomic region with autism by genotyping autistic patients (n=480) and matched controls (n=480). Parallel sequencing identified five rare missense variants within or near PDZ4-6 only in the autism cohort, resulting in a higher cumulative mutation load (P=0.032). Two variants correlated with a more severe deficit in reciprocal social interaction in affected sibling pairs from proband families. These variants were associated with altered interactions with GluA2/3 and faster recycling and increased surface distribution of GluA2 in neurons, suggesting gain-of-function because GRIP1/2 deficiency showed opposite phenotypes. Grip1/2 knockout mice exhibited increased sociability and impaired prepulse inhibition. These results support a role for GRIP in social behavior and implicate GRIP1 variants in modulating autistic phenotype.


Subject(s)
Autistic Disorder/metabolism , Carrier Proteins/metabolism , Mutation, Missense , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Polymorphism, Single Nucleotide , Receptors, Glutamate/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Autistic Disorder/genetics , Carrier Proteins/genetics , Cells, Cultured , Child , Cohort Studies , Humans , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Protein Structure, Tertiary , Rats , Receptors, Glutamate/genetics
18.
J Proteomics ; 73(9): 1747-57, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20594931

ABSTRACT

Oxidative damage in dopaminergic neurons of the substantia nigra plays an important role in the pathogenesis of Parkinson's disease. Glucose-6-phosphate dehydrogenase (G6PD) is a key protective enzyme responsible for maintaining adequate levels of the major cellular reducing agent NADPH. We have previously shown that over-expression of G6PD in dopaminergic neurons of the substantia nigra results in resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in mice. In order to further examine this neuroprotective effect, a comparative proteomic study of the ventral mesencephalon (containing substantia nigra) and the striatum between wild-type and G6PD over-expressing mice was carried out. In addition to the protein level, over-expression of G6PD in the transgenic animals was also confirmed by determination of mRNA and enzymatic activity. Proteins with differential expression were mainly involved in antioxidant defense, detoxification and synaptic function, as demonstrated by gene ontology analysis. Hence, the changes in the nigrostriatal protein profile could partially explain the protection against MPTP-induced neuronal damage, and could also lead to new potential targets for antioxidant pharmacological intervention.


Subject(s)
Corpus Striatum/metabolism , Gene Expression Profiling , Glucosephosphate Dehydrogenase/biosynthesis , Mesencephalon/metabolism , Neurons/metabolism , Substantia Nigra/metabolism , Animals , Dopamine/physiology , Electrophoresis, Gel, Two-Dimensional , Glucosephosphate Dehydrogenase/genetics , MPTP Poisoning/metabolism , Mice , Mice, Transgenic , Parkinsonian Disorders/chemically induced , Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
19.
J Neurosci ; 29(50): 15846-50, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20016100

ABSTRACT

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known cause of Parkinson's disease (PD). Whether loss of LRRK2 function accounts for neurodegeneration of dopamine neurons in PD is not known, nor is it known whether LRRK2 kinase activity modulates the susceptibility of dopamine (DA) neurons to the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To better understand the role of LRRK2 in DA neuronal survival and its role in the susceptibility of DA neurons to MPTP, we generated LRRK2 knock-out (KO) mice lacking the kinase domain of LRRK2. Here, we show that LRRK2 KO mice are viable and have no major abnormalities and live to adulthood. The dopaminergic system is normal in LRRK2 KO mice as assessed via HPLC for DA and its metabolites and via stereologic assessment of DA neuron number in young and aged mice. Importantly, there is no significant difference in the susceptibility of LRRK2 KO and wild-type mice to MPTP. These results suggest that LRRK2 plays little if any role in the development and survival of DA neurons under physiologic conditions. Thus, PD due to LRRK2 mutations are likely not due to a loss of function. Moreover, LRRK2 is not required for the susceptibility of DA neurons to MPTP.


Subject(s)
MPTP Poisoning/genetics , MPTP Poisoning/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology , Animals , Female , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Neurons/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...