Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; 8(1): e2300901, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37800986

ABSTRACT

Improving the stability of lead halide perovskite solar cells (PSCs) for industrialization is currently a major challenge. It is shown that moisture induces changes in global PSC performance, altering the nature of the absorber through phase transition or segregation. Understanding how the material evolves in a wet environment is crucial for optimizing device performance and stability. Here, the chemical and structural evolution of state-of-the-art hybrid perovskite thin-film Cs0.05 (MA0.15 FA0.85 )0.95 Pb(I0.84 Br0.16 )3 (CsMAFA) is investigated after aging under controlled humidity with analytical characterization techniques. The analysis is performed at different scales through Photoluminescence, X-ray Diffraction Spectroscopy, Cathodoluminescence, Selected Area Electron Diffraction, and Energy Dispersive X-ray Spectroscopy. From the analysis of the degradation products from the perovskite layer and by the correlation of their optical and chemical properties at a microscopic level, different phases such as lead-iodide (PbI2 ), inorganic mixed halide CsPb(I0.9 Br0.1 )3 and lead-rich CsPb2 (I0.74 Br0.26 )5 perovskite are evidenced. These phases demonstrate a high degree of crystallinity that induces unique geometrical shapes and drastically affects the optoelectronic properties of the thin film. By identifying the precise nature of these specific species, the multi-scale approach provides insights into the degradation mechanisms of hybrid perovskite materials, which can be used to improve PSC stability.

2.
ACS Appl Mater Interfaces ; 14(9): 11636-11644, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35213136

ABSTRACT

To upscale the emerging perovskite photovoltaic technology to larger-size modules, industrially relevant deposition techniques need to be developed. In this work, the deposition of tin oxide used as an electron extraction layer is established using chemical bath deposition (CBD), a low-cost and solution-based fabrication process. Applying this simple low-temperature deposition method, highly homogeneous SnO2 films are obtained in a reproducible manner. Moreover, the perovskite layer is prepared by sequentially slot-die coating on top of the n-type contact. The symbiosis of these two industrially relevant deposition techniques allows for the growth of high-quality dense perovskite layers with large grains. The uniformity of the perovskite film is further confirmed by scanning electron microscopy (SEM)/scanning transmission electron microscopy (STEM) analysis coupled with energy dispersive X-ray spectroscopy (EDX) and cathodoluminescence measurements allowing us to probe the elemental composition at the nanoscale. Perovskite solar cells fabricated from CBD SnO2 and slot-die-coated perovskite show power conversion efficiencies up to 19.2%. Furthermore, mini-modules with an aperture area of 40 cm2 demonstrate efficiencies of 17% (18.1% on active area).

SELECTION OF CITATIONS
SEARCH DETAIL
...