Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 82(11): 2539-2553, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29030862

ABSTRACT

Color additives are applied to many food, drug, and cosmetic products. With up to 85% of consumer buying decisions potentially influenced by color, appropriate application of color additives and their safety is critical. Color additives are defined by the U.S. Federal Food, Drug, and Cosmetic Act (FD&C Act) as any dye, pigment, or substance that can impart color to a food, drug, or cosmetic or to the human body. Under current U.S. Food and Drug Administration (FDA) regulations, colors fall into 2 categories as those subject to an FDA certification process and those that are exempt from certification often referred to as "natural" colors by consumers because they are sourced from plants, minerals, and animals. Certified colors have been used for decades in food and beverage products, but consumer interest in natural colors is leading market applications. However, the popularity of natural colors has also opened a door for both unintentional and intentional economic adulteration. Whereas FDA certifications for synthetic dyes and lakes involve strict quality control, natural colors are not evaluated by the FDA and often lack clear definitions and industry accepted quality and safety specifications. A significant risk of adulteration of natural colors exists, ranging from simple misbranding or misuse of the term "natural" on a product label to potentially serious cases of physical, chemical, and/or microbial contamination from raw material sources, improper processing methods, or intentional postproduction adulteration. Consistent industry-wide safety standards are needed to address the manufacturing, processing, application, and international trade of colors from natural sources to ensure quality and safety throughout the supply chain.


Subject(s)
Coloring Agents/standards , Food Additives/standards , Pigments, Biological/standards , Animals , Commerce , Food Coloring Agents/standards , Food Contamination , Humans , Legislation, Drug , Legislation, Food , Quality Control , United States , United States Food and Drug Administration
2.
J Agric Food Chem ; 60(9): 2316-21, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22239645

ABSTRACT

Wheat gluten proteins are considered to have the unique ability to form viscoelastic matrices that are essential for breadmaking. This study shows that maize seed storage protein (zein), if properly treated, can be made to function similarly to gluten at the protein secondary structure level with concomitant improved viscoelasticity. Here, we propose the concept of a small amount of coprotein (high molecular weight glutenin or casein) acting to stabilize a build-up of ß-sheet structure in a zein-based dough, thus creating a viscoelastic matrix that is retained over time. This discovery is relevant to the need for gluten replacement viscoelastic proteins for wheat intolerant individuals and as well opens possibilities of creating wheatlike cereal varieties that could more cheaply substitute for wheat imports in developing countries.


Subject(s)
Zea mays/chemistry , Zein/chemistry , Caseins/chemistry , Drug Stability , Elasticity , Glutens/chemistry , Protein Structure, Secondary , Rheology , Spectroscopy, Fourier Transform Infrared , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...