Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(19): 14393-14406, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38712786

ABSTRACT

Smart water injection is a technology that allows changing the wettability of the oil rock by injecting water at different salinities, in a cheap and environmentally friendly way compared to other traditional methods. In this study, the individual effect of some typical salts on the wettability of the (104) surface of calcite toward non-polar and polar crude oil models was explored by molecular dynamics as a function of the salinity and pH. The results obtained show that the electrical double layer plays a principal role in the detachment of crude oil models. The divalent ion salts, i.e., CaCl2, CaSO4, MgCl2, and MgSO4, do not form the electrical double layer on calcite, but salts of NaCl and Na2SO4 form it. Moreover, the surface affinity of calcite to the non-polar crude oil is not affected by the salinity. However, the affinity of the calcite surface toward polar crude is affected by salinity and pH conditions. This research provides new insights into the action mechanisms that could help optimize its uses in enhanced oil recovery.

2.
J Am Soc Mass Spectrom ; 33(6): 952-960, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35549471

ABSTRACT

Cutaneous leishmaniasis is a skin disease caused by flagellate protozoa of the genus Leishmania and transmitted by sandflies of the genus Lutzomyia. Around 1 million new cases occur in the world annually, with a total of 12 million people affected, mainly in rural areas with low access to health services and adequate treatments. In the area of the Americas, Colombia has one of the highest infection rates after Brazil. Topical treatments with pentamidine isethionate (PMD) present an attractive alternative due to their ease of application and low costs. However, cutaneous leishmaniasis lesions present nodules with seropurulent exudate that, when drying, form hyperkeratotic lesions, hindering the effective penetration of drugs for their treatment. The use of molecular histology techniques, such as MALDI-MSI, allow in situ evaluation of the penetration of the treatment to the sections of the dermis where the disease-causing parasite resides. However, the large volume of information generated makes it impossible to process it manually. Machine learning techniques allow the unsupervised processing of large amounts of information, generating prediction models for the classification of new information. This work proposes a low-cost method to generate cutaneous leishmaniasis detection and classification models using MALDI-MSI images taken from murine models. The proposed models allow a 95% efficiency when separating healthy samples from infected samples and an effectiveness of 67% when separating effectively treated samples from unsuccessfully treated samples.


Subject(s)
Leishmaniasis, Cutaneous , Psychodidae , Animals , Disease Models, Animal , Humans , Leishmaniasis, Cutaneous/diagnosis , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/parasitology , Mice , Psychodidae/parasitology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , United States
3.
Phys Chem Chem Phys ; 24(18): 11412-11419, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35504048

ABSTRACT

The wettability of graphene oxide functionalized with N-alkylamines was studied by molecular dynamics simulations. Six different N-alkylamines and two functionalization degrees were reviewed. The nucleophilic ring-opening reaction mechanism between the N-alkylamines and epoxy functional groups of graphene oxide was considered to generate the atomistic models. Water contact angles increased with both the alkyl chain length and substitution degree. The Wenzel model was used to access the effect of both the surface roughness and alkyl chain length on wettability. The results indicated that functionalization introduces an important increase of surface roughness but its effect on wettability is countered by the alkyl chain length.

4.
Anal Bioanal Chem ; 413(17): 4545-4555, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34037808

ABSTRACT

Cutaneous leishmaniasis (CL) is one of the illnesses caused by Leishmania parasite infection, which can be asymptomatic or severe according to the infecting Leishmania strain. CL is commonly diagnosed by directly detecting the parasites or their DNA in tissue samples. New diagnostic methodologies target specific proteins (biomarkers) secreted by the parasite during the infection process. However, specific bioreceptors for the in vivo or in vitro detection of these novel biomarkers are rather limited in terms of sensitivity and specificity. For this reason, we here introduce three novel peptides as bioreceptors for the highly sensitive and selective identification of acid phosphatase (sAP) and proteophosphoglycan (PPG), which have a crucial role in leishmaniasis infection. These high-affinity peptides have been designed from the conservative domains of the lectin family, holding the ability to interact with the biological target and produce the same effect than the original protein. The synthetic peptides have been characterized and the affinity and kinetic constants for their interaction with the targets (sAP and PPG) have been determined by a surface plasmon resonance biosensor. Values obtained for KD are in the nanomolar range, which is comparable to high-affinity antibodies, with the additional advantage of a high biochemical stability and simpler production. Pep2854 exhibited a high affinity for sAP (KD = 1.48 nM) while Pep2856 had a good affinity for PPG (KD 1.76 nM). This study evidences that these peptidomimetics represent a novel alternative tool to the use of high molecular weight proteins for biorecognition in the diagnostic test and biosensor devices for CL.


Subject(s)
Acid Phosphatase/analysis , Leishmania/isolation & purification , Leishmaniasis, Cutaneous/parasitology , Membrane Proteins/analysis , Peptides/chemistry , Proteoglycans/analysis , Protozoan Proteins/analysis , Surface Plasmon Resonance/methods , Binding Sites , Humans , Leishmania/enzymology , Leishmaniasis, Cutaneous/diagnosis , Models, Molecular , Peptides/chemical synthesis , Peptidomimetics/chemical synthesis , Peptidomimetics/chemistry
5.
Analyst ; 145(9): 3414-3423, 2020 May 07.
Article in English | MEDLINE | ID: mdl-32254686

ABSTRACT

Six essential oils were analyzed by Fourier transform ion cyclotron resonance mass spectrometry coupled to negative-ion electrospray ionization (ESI(-)/FT-ICR MS). ESI offers selective ionization of a compound's polar functional groups containing nitrogen and oxygen heteroatoms. ESI in negative-ion mode allows the identification of the acidic compounds. The results showed that the samples contain between 1100-3600 individual molecular compositions, which corresponds to the greatest number of species detected to date in essential oils obtained from aromatic plant material. The compositions cover a mass range between m/z 150-500 with up to 41 carbon atoms. The dominant organic constituents of the essential oils correspond to species incorporating 2-5 oxygen atoms, detected as deprotonated/sodiated/chlorinated species. A set of 580 molecular assignments were found in common across all the samples and for the first time, a set of unique molecular systems were identified, and up to 1373 species as a unique composition for each essential oil. The molecular distributions plotted in van Krevelen diagrams (classified by their H/C vs. O/C values) suggest the presence of species with long alkyl chains and low numbers of rings plus double bonds.

6.
Protein J ; 38(5): 506-514, 2019 10.
Article in English | MEDLINE | ID: mdl-31119600

ABSTRACT

Gold nanoclusters protected with bovine serum albumin (AuNC) can be used in multiple biomedical applications through functionalization with two new and bioactive peptides. Both cationic peptides sequences of 17 amino acids in length and the cysteine residue at its C-terminus were designed and synthesized. Peptides were obtained by solid phase synthesis using the Fmoc strategy. Peptides may be coupled via disulfide bonds to AuNC with hydrodynamic size ~ 2 nm ± 0.3 determined by dynamic light scattering and it had a zeta potential value equal to - 42 mV. Peptides named NBC2253 and NBC2254 were attached to the AuNC using N-succinimidyl-3-(2-pyridyl-dithiol) propionate as crosslinker agent. AuNC@NBC2253 was more active against methicillin-resistant Staphylococcus aureus (MIC50 6.5 µM) and AuNC@NBC2254 exhibited higher antimicrobial activity than the free peptides on Escherichia coli O157:H7 (MIC50 3.5 µM). No hemolysis was detected for any of the peptides. It is evidenced that these antimicrobial peptides conjugated to AuNC serve as promising agents to combat some multi-resistant bacterial strains and that the specific binding of these antimicrobial peptides to gold nanoclusters improves the interaction of these nanostructured systems with the biological target.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Gold/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Peptides/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Escherichia coli Infections/microbiology , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Models, Molecular , Nanoconjugates/chemistry , Peptides/chemical synthesis , Peptides/chemistry , Staphylococcal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL