Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Cogn Enhanc ; 7(1-2): 112-127, 2023.
Article in English | MEDLINE | ID: mdl-37351199

ABSTRACT

Driving ability has been shown to be dependent on perceptual-cognitive abilities such as visual attention and speed of processing. There is mixed evidence suggesting that training these abilities may improve aspects of driving performance. This preliminary study investigated the feasibility of training three-dimensional multiple object tracking (3D-MOT)-a dynamic, speeded tracking task soliciting selective, sustained and divided attention as well as speed of processing-to improve measures of simulated driving performance in older and younger adults. A sample of 20 young adults (23-33 years old) and 14 older adults (65-76 years old) were randomly assigned to either a 3D-MOT training group or an active control group trained on a perceptual discrimination task as well as 2048. Participants were tested on a driving scenario with skill-testing events previously identified as optimal for cross-sectional comparisons of driving ability. Results replicated previously identified differences in driving behaviour between age groups. A possible trend was observed for the 3D-MOT trained group, especially younger adults, to increase the distance at which they applied their maximum amount of braking in response to dangerous events. This measure was associated with less extreme braking during events, implying that these drivers may have been making more controlled stops. Limitations of sample size and task realism notwithstanding, the present experiment offers preliminary evidence that 3D-MOT training might transfer to driving performance through quicker detection of or reaction to dangerous events and provides a rationale for replication with a larger sample size.

2.
Neuroreport ; 33(12): 504-508, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35882017

ABSTRACT

OBJECTIVES: 3-dimensional multiple object tracking (3D-MOT) and the useful field of view (UFOV) both claim to measure and train cognitive abilities, such as selective and divided attention implicated in driving safety. 3D-MOT is claimed to improve even young adult cognitive ability. If true, one would expect to observe the transfer of 3D-MOT training to UFOV performance mediated by way of shared underlying cognitive mechanisms. METHODS: We test this notion by assessing whether ten 30-min sessions of 3D-MOT training spread across 5 weeks improves UFOV performance relative to an active control group trained on a visual task and a challenging puzzle game (participants aged between 23 and 33 years old). RESULTS: The 3D-MOT training group exhibited significantly improved UFOV performance whereas the active control group exhibited only a small, statistically nonsignificant improvement in the task. CONCLUSIONS: This suggests that 3D-MOT and UFOV performance are likely dependent on overlapping cognitive abilities and helps support the assertion that these abilities can be trained and measured even in young adults. Such training could have implications for improving driver safety in both young and older adults.


Subject(s)
Automobile Driving , Humans , Young Adult , Aged , Adult , Automobile Driving/psychology , Cognition , Attention
3.
PLoS One ; 16(3): e0247254, 2021.
Article in English | MEDLINE | ID: mdl-33724991

ABSTRACT

Having an optimal quality of vision as well as adequate cognitive capacities is known to be essential for driving safety. However, the interaction between vision and cognitive mechanisms while driving remains unclear. We hypothesized that, in a context of high cognitive load, reduced visual acuity would have a negative impact on driving behavior, even when the acuity corresponds to the legal threshold for obtaining a driving license in Canada, and that the impact observed on driving performance would be greater with the increase in the threshold of degradation of visual acuity. In order to investigate this relationship, we examined driving behavior in a driving simulator under optimal and reduced vision conditions through two scenarios involving different levels of cognitive demand. These were: 1. a simple rural driving scenario with some pre-programmed events and 2. a highway driving scenario accompanied by a concurrent task involving the use of a navigation device. Two groups of visual quality degradation (lower/ higher) were evaluated according to their driving behavior. The results support the hypothesis: A dual task effect was indeed observed provoking less stable driving behavior, but in addition to this, by statistically controlling the impact of cognitive load, the effect of visual load emerged in this dual task context. These results support the idea that visual quality degradation impacts driving behavior when combined with a high mental workload driving environment while specifying that this impact is not present in the context of low cognitive load driving condition.


Subject(s)
Automobile Driving/psychology , Distracted Driving/psychology , Reaction Time/physiology , Adult , Attention/physiology , Canada , Cognition/physiology , Computer Simulation , Female , Humans , Male , Psychomotor Performance , Vision, Ocular/physiology , Visual Acuity/physiology , Visual Perception/physiology
4.
PLoS One ; 15(12): e0240201, 2020.
Article in English | MEDLINE | ID: mdl-33382720

ABSTRACT

Driving is an everyday task involving a complex interaction between visual and cognitive processes. As such, an increase in the cognitive and/or visual demands can lead to a mental overload which can be detrimental for driving safety. Compiling evidence suggest that eye and head movements are relevant indicators of visuo-cognitive demands and attention allocation. This study aims to investigate the effects of visual degradation on eye-head coordination as well as visual scanning behavior during a highly demanding task in a driving simulator. A total of 21 emmetropic participants (21 to 34 years old) performed dual-task driving in which they were asked to maintain a constant speed on a highway while completing a visual search and detection task on a navigation device. Participants did the experiment with optimal vision and with contact lenses that introduced a visual perturbation (myopic defocus). The results indicate modifications of eye-head coordination and the dynamics of visual scanning in response to the visual perturbation induced. More specifically, the head was more involved in horizontal gaze shifts when the visual needs were not met. Furthermore, the evaluation of visual scanning dynamics, based on time-based entropy which measures the complexity and randomness of scanpaths, revealed that eye and gaze movements became less explorative and more stereotyped when vision was not optimal. These results provide evidence for a reorganization of both eye and head movements in response to increasing visual-cognitive demands during a driving task. Altogether, these findings suggest that eye and head movements can provide relevant information about visuo-cognitive demands associated with complex tasks. Ultimately, eye-head coordination and visual scanning dynamics may be good candidates to estimate drivers' workload and better characterize risky driving behavior.


Subject(s)
Attention/physiology , Automobile Driving/psychology , Eye Movements/physiology , Head Movements/physiology , Psychomotor Performance , Adult , Cognition/physiology , Female , Humans , Male , Risk-Taking , Simulation Training , Vision, Ocular/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...