ABSTRACT
Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.
Subject(s)
CD40 Ligand/blood , Endothelial Cells/drug effects , Hemolytic-Uremic Syndrome/blood , Shiga Toxin/toxicity , Cells, Cultured , Child , Child, Preschool , Endothelial Cells/pathology , Female , Hemolytic-Uremic Syndrome/chemically induced , Humans , Infant , Kidney/metabolism , Kidney/pathology , Male , Microvessels , Monocytes/metabolism , Oxidative Stress , Platelet Activation/drug effects , Reactive Oxygen Species/metabolismABSTRACT
Ruminants are the primary reservoir of Shiga-toxin producing Escherichia coli (STEC) O157:H7 and the main source of infection for humans. The aim of this study was to assess the immunogenic properties of a candidate vaccine consisting on the recombinant proteins of E. coli O157:H7 IntiminC280, the carboxy-terminal fraction of Intimin γ, EspB and the fusion protein between the B subunit of Stx2 and Brucella Lumazine Synthase (BLS)(BLS-Stx2B), in Holstein Fresian calves.To accomplish this goal we vaccinated calves with two doses of different vaccine formulations: 2 antigens (IntiminC280, EspB), 3 antigens (IntiminC280, EspB, BLS-Stx2B), BLS-Stx2B alone and a control non-vaccinated group. All antigens were expressed as recombinant proteins in E. coli. Specific IgG titres increased in vaccinated calves and the inclusion of BLS-Stx2B in the formulation seems to have a stimulatory effect on the humoral response to IntiminC280 and EspB after the booster. The neutralizing activity of antibodies against these two antigens was assessed in Red Blood Cell lysis assays and adherence to Hep-2 cells as a correlate of T3SS activity. Both sera from animals vaccinated with 2 or 3 antigens inhibited both virulence properties. Serological response to Stx2 was observed in animals vaccinated only with BLS-Stx2B and with 3 antigens and neutralization of Stx2 cytotoxicity was also observed in both groups. In conclusion, immunization of calves with BLS-Stx2B, IntiminC280 and EspB elicited a potent humoral response able to neutralize Shiga toxin 2 cytotoxity and the T3SS virulence properties in vitro. These results suggest that this formulation is a good candidate vaccine to reduce STEC shedding in cattle and needs to be further assessed in vivo.
Subject(s)
Cattle Diseases/immunology , Cattle/immunology , Escherichia coli Infections/veterinary , Escherichia coli Vaccines/immunology , Shiga Toxin 2/immunology , Type III Secretion Systems , Adhesins, Bacterial/metabolism , Animals , Antibodies, Bacterial/blood , Bacterial Outer Membrane Proteins/metabolism , Bacterial Shedding , Cattle Diseases/microbiology , Cell Adhesion , Chlorocebus aethiops , Erythrocytes/microbiology , Escherichia coli Infections/immunology , Escherichia coli O157/pathogenicity , Escherichia coli Proteins/metabolism , Immunity, Humoral , Immunoglobulin G/blood , Male , Recombinant Proteins/immunology , Vero Cells , VirulenceABSTRACT
Shiga toxin producing Escherichia coli (STEC) are bacterial pathogens involved in food-borne diseases. Shiga toxin (Stx) is the main virulence factor of STEC and is responsible for systemic complications including Hemolytic Uremic Syndrome (HUS). It has been previously demonstrated that Shiga toxin type 2 (Stx2) induces pregnancy loss in rats in early stage of pregnancy. The main purpose of this study was to determine if an active immunization prevents Stx2 mediated pregnancy loss and confers passive protective immunity to the offspring. For that purpose Sprague Dawley female rats were immunized with the chimera based on the enzyme lumazine synthase from Brucella spp. (BLS) and the B subunit of Shiga toxin 2 (Stx2B) named BLS-Stx2B. After immunization females were mated with males. At day 8 of gestation, dams were challenged intraperitoneally with a sublethal and abortifacient dose of Stx2. The immunization induced high anti-Stx2B-specific antibody titers in sera and most important, prevented pregnancy loss. Pups born and breastfeed by immunized dams had high anti-Stx2B-specific antibody titers in sera. Cross-fostering experiments indicated that passive protective immunity against Stx2 was transmitted through lactation. These results indicate that immunization of adult female rats with BLS-Stx2B prevents Stx2-induced pregnancy loss and confers anti Stx2 protective immunity to the offspring.
Subject(s)
Abortion, Spontaneous/prevention & control , Escherichia coli Infections/prevention & control , Escherichia coli Vaccines/immunology , Immunity, Maternally-Acquired , Shiga Toxin 2/immunology , Abortion, Spontaneous/microbiology , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Brucella/enzymology , Female , Foodborne Diseases/prevention & control , Hemolytic-Uremic Syndrome/prevention & control , Male , Multienzyme Complexes/immunology , Pregnancy , Rats , Rats, Sprague-Dawley , Recombinant Fusion Proteins/immunology , Shiga-Toxigenic Escherichia coliABSTRACT
Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome.
Subject(s)
Antitoxins/isolation & purification , Hemolytic-Uremic Syndrome/therapy , Immunotherapy/methods , Shiga Toxin 2/immunology , Single-Chain Antibodies/isolation & purification , Animals , Antitoxins/therapeutic use , Camelus , Disease Models, Animal , Hemolytic-Uremic Syndrome/diagnosis , Mice , Serologic Tests/methods , Single-Chain Antibodies/therapeutic use , Therapeutics , Treatment OutcomeABSTRACT
UNLABELLED: Shiga toxins (Stx) are the main agent responsible for the development of hemolytic-uremic syndrome (HUS), the most severe and life-threatening systemic complication of infection with enterohemorrhagic Escherichia coli (EHEC) strains. We previously described Stx2 expression by eukaryotic cells after they were transfected in vitro with the stx2 gene cloned into a prokaryotic plasmid (pStx2). The aim of this study was to evaluate whether mammalian cells were also able to express Stx2 in vivo after pStx2 injection. Mice were inoculated by hydrodynamics-based transfection (HBT) with pStx2. We studied the survival, percentage of polymorphonuclear leukocytes in plasma, plasma urea levels, and histology of the kidneys and the brains of mice. Mice displayed a lethal dose-related response to pStx2. Stx2 mRNA was recovered from the liver, and Stx2 cytotoxic activity was observed in plasma of mice injected with pStx2. Stx2 was detected by immunofluorescence in the brains of mice inoculated with pStx2, and markers of central nervous system (CNS) damage were observed, including increased expression of glial fibrillary acidic protein (GFAP) and fragmentation of NeuN in neurons. Moreover, anti-Stx2B-immunized mice were protected against pStx2 inoculation. Our results show that Stx2 is expressed in vivo from the wild stx2 gene, reproducing pathogenic damage induced by purified Stx2 or secondary to EHEC infection. IMPORTANCE: Enterohemorrhagic Shiga toxin (Stx)-producing Escherichia coli (EHEC) infections are a serious public health problem, and Stx is the main pathogenic agent associated with typical hemolytic-uremic syndrome (HUS). In contrast to the detailed information describing the molecular basis for EHEC adherence to epithelial cells, very little is known about how Stx is released from bacteria in the gut, reaching its target tissues, mainly the kidney and central nervous system (CNS). In order to develop an efficient treatment for EHEC infections, it is necessary to understand the mechanisms involved in Stx expression. In this regard, the present study demonstrates that mammals can synthesize biologically active Stx using the natural promoter associated with the Stx-converting bacteriophage genome. These results could impact the comprehension of EHEC HUS, since local eukaryotic cells transduced and/or infected by bacteriophage encoding Stx2 could be an alternative source of Stx production.
Subject(s)
Enterohemorrhagic Escherichia coli/metabolism , Escherichia coli Infections/microbiology , Promoter Regions, Genetic , Shiga Toxin 2/biosynthesis , Shiga Toxin 2/genetics , Animals , Brain/metabolism , Brain/microbiology , Brain/pathology , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Infections/pathology , Female , Humans , Kidney/metabolism , Kidney/microbiology , Kidney/pathology , Liver/metabolism , Liver/microbiology , Liver/pathology , Male , Mice , Mice, Inbred BALB CABSTRACT
The striking feature of enterohemorrhagic Escherichia coli (EHEC) infections is the production of Shiga toxins (Stx) implicated in the development of the life-threatening hemolytic uremic syndrome. Despite the magnitude of the social impact of EHEC infections, no licensed vaccine or effective therapy is available for human use. One of the biggest challenges is to develop an effective and safe immunogen to ensure nontoxicity, as well as a strong input to the immune system to induce long-lasting, high-affinity Abs with anti-Stx-neutralizing capacity. The enzyme lumazine synthase from Brucella spp. (BLS) is a highly stable dimer of pentamers and a scaffold with enormous plasticity on which to display foreign Ags. Taking into account the advantages of BLS and the potential capacity of the B subunit of Stx2 to induce Abs that prevent Stx2 toxicity by blocking its entrance into the host cells, we engineered a new immunogen by inserting the B subunit of Stx2 at the amino termini of BLS. The resulting chimera demonstrated a strong capacity to induce a long-lasting humoral immune response in mice. The chimera induced Abs with high neutralizing capacity for Stx2 and its variants. Moreover, immunized mice were completely protected against i.v. Stx2 challenge, and weaned mice receiving an oral challenge with EHEC were completely protected by the transference of immune sera. We conclude that this novel immunogen represents a promising candidate for vaccine or Ab development with preventive or therapeutic ends, for use in hemolytic uremic syndrome-endemic areas or during future outbreaks caused by pathogenic strains of Stx-producing E. coli.
Subject(s)
Hemolytic-Uremic Syndrome/prevention & control , Multienzyme Complexes/immunology , Shiga Toxin 2/immunology , Shigella Vaccines/immunology , Animals , Antibodies, Bacterial/blood , Antibodies, Neutralizing/blood , Brucella , Disease Models, Animal , Enterohemorrhagic Escherichia coli , Female , Male , Mice , Mice, Inbred BALB C , Multienzyme Complexes/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Shiga Toxin 2/chemistryABSTRACT
Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.