Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(14): e2201581, 2023 06.
Article in English | MEDLINE | ID: mdl-36495232

ABSTRACT

To streamline the drug discovery pipeline, there is a pressing need for preclinical models which replicate the complexity and scale of native tumors. While there have been advancements in the formation of microscale tumor units, these models are cell-line dependent, time-consuming and have not improved clinical trial success rates. In this study, two methods for generating 3D tumor microenvironments are compared, rapidly fabricated hydrogel microspheres and traditional cell-dense spheroids. These modules are then bioassembled into 3D printed thermoplastic scaffolds, using an automated biofabrication process, to form tumor-scale models. Modules are formed with SKOV3 and HFF cells as monocultures and cocultures, and the fabrication efficiency, cell architecture, and drug response profiles are characterized, both as single modules and as multimodular constructs. Cell-encapsulated Gel-MA microspheres are fabricated with high-reproducibility and dimensions necessary for automated tumor-scale bioassembly regardless of cell type, however, only cocultured spheroids form compact modules suitable for bioassembly. Chemosensitivity assays demonstrate the reduced potency of doxorubicin in coculture bioassembled constructs and a ≈five-fold increase in drug resistance of cocultured cells in 3D modules compared with 2D monolayers. This bioassembly system is efficient and tailorable so that a variety of relevant-sized tumor constructs could be developed to study tumorigenesis and modernize drug discovery.


Subject(s)
Spheroids, Cellular , Tumor Microenvironment , Drug Evaluation, Preclinical , Reproducibility of Results , Coculture Techniques
2.
J Funct Biomater ; 13(2)2022 Apr 10.
Article in English | MEDLINE | ID: mdl-35466223

ABSTRACT

Epigenetic approaches using the histone deacetylase 2 and 3 inhibitor-MI192 have been reported to accelerate stem cells to form mineralised tissues. Gelatine methacryloyl (GelMA) hydrogels provide a favourable microenvironment to facilitate cell delivery and support tissue formation. However, their application for bone repair is limited due to their low mechanical strength. This study aimed to investigate a GelMA hydrogel reinforced with a 3D printed scaffold to support MI192-induced human bone marrow stromal cells (hBMSCs) for bone formation. Cell culture: The GelMA (5 wt%) hydrogel supported the proliferation of MI192-pre-treated hBMSCs. MI192-pre-treated hBMSCs within the GelMA in osteogenic culture significantly increased alkaline phosphatase activity (p ≤ 0.001) compared to control. Histology: The MI192-pre-treated group enhanced osteoblast-related extracellular matrix deposition and mineralisation (p ≤ 0.001) compared to control. Mechanical testing: GelMA hydrogels reinforced with 3D printed poly(ethylene glycol)-terephthalate/poly(butylene terephthalate) (PEGT/PBT) scaffolds exhibited a 1000-fold increase in the compressive modulus compared to the GelMA alone. MI192-pre-treated hBMSCs within the GelMA-PEGT/PBT constructs significantly enhanced extracellular matrix collagen production and mineralisation compared to control (p ≤ 0.001). These findings demonstrate that the GelMA-PEGT/PBT construct provides enhanced mechanical strength and facilitates the delivery of epigenetically-activated MSCs for bone augmentation strategies.

3.
Bone ; 153: 116138, 2021 12.
Article in English | MEDLINE | ID: mdl-34339909

ABSTRACT

Human bone marrow stromal cells (hBMSCs) have been extensively utilised for bone tissue engineering applications. However, they are associated with limitations that hinder their clinical utility for bone regeneration. Cell fate can be modulated via altering their epigenetic functionality. Inhibiting histone deacetylase (HDAC) enzymes have been reported to promote osteogenic differentiation, with HDAC3 activity shown to be causatively associated with osteogenesis. Therefore, this study aimed to investigate the potential of using an HDAC2 & 3 selective inhibitor - MI192 to induce epigenetic reprogramming of hBMSCs and enhance its therapeutic efficacy for bone formation. Treatment with MI192 caused a time-dose dependant reduction in hBMSCs viability. MI192 was also found to substantially alter hBMSCs epigenetic function through reduced HDAC activity and increased histone acetylation. hBMSCs were pre-treated with MI192 (50 µM) for 48 h prior to osteogenic induction. MI192 pre-treatment significantly upregulated osteoblast-related gene/protein expression (Runx2, ALP, Col1a and OCN) and enhanced alkaline phosphatase specific activity (ALPSA) (1.43-fold) (P ≤ 0.001). Moreover, MI192 substantially increased hBMSCs extracellular matrix calcium deposition (1.4-fold) (P ≤ 0.001) and mineralisation when compared to the untreated control. In 3D microtissue culture, MI192 significantly promoted hBMSCs osteoblast-related gene expression and ALPSA (> 2.41-fold) (P ≤ 0.001). Importantly, MI192 substantially enhanced extracellular matrix deposition (ALP, Col1a, OCN) and mineralisation (1.67-fold) (P ≤ 0.001) within the bioassembled-microtissue (BMT) construct. Following 8-week intraperitoneal implantation within nude mice, MI192 treated hBMSCs exhibited enhanced extracellular matrix deposition and mineralisation (2.39-fold) (P ≤ 0.001) within the BMT when compared to the untreated BMT construct. Taken together, these results demonstrate that MI192 effectively altered hBMSCs epigenetic functionality and is capable of promoting hBMSCs osteogenic differentiation in vitro and in vivo, indicating the potential of using epigenetic reprogramming to enhance the therapeutic efficacy of hBMSCs for bone augmentation strategies.


Subject(s)
Mesenchymal Stem Cells , Animals , Bone Marrow , Bone Marrow Cells , Bone Regeneration , Cell Differentiation , Cells, Cultured , Epigenesis, Genetic , Humans , Mice , Mice, Nude , Osteogenesis/genetics
4.
J Mech Behav Biomed Mater ; 98: 317-326, 2019 10.
Article in English | MEDLINE | ID: mdl-31301603

ABSTRACT

Tissue engineering strategies require the provision of a micromechanical state of stress that is conducive to the generation and maintenance of healthy mature tissue. Of particular interest, angle-ply biomimetic scaffolds augmented with cellular content have been proposed for annulus fibrosus (AF) engineering in order to repair the intervertebral disc. However, the influence of the inherent variability of fabricated constructs and physiological conditions on overall scaffold mechanics, micromechanical environment within the scaffold, and consequent cellular differentiation is relatively unknown. In this study, melt extrusion 3D fiber-deposition (3DF) was used to fabricate five different polycaprolactone angle-ply scaffold architectures which were subject to multiaxial tensile testing and linear elastic orthotropic constitutive fitting. All scaffold groups predicted stiffnesses similar to previously reported native AF moduli in biaxial and uniaxial tensile strain. However, no single scaffold group in this study simultaneously achieved all target AF mechanics in all loading regimes. In equibiaxial tension, the biaxial stiffness ratio of native AF (EEr = 0.55 to 0.62) was predicted between fiber angles of 30° and 35°, which is similar to the collagen orientation in native AF. In global equibiaxial loading, an apparent asymptote in the transverse moduli (EEx ranging -380 MPa to 700 MPa) was observed near the 40° fiber angle scaffolds in equibiaxial tensile strain, attributed to stiffening from the transverse loading. These results highlight that tissue engineering scaffold designs should target replication of physiologically-relevant native tissue mechanics and demonstrate the importance of designing constructs that are unaffected by anticipated variations in manufacturing and clinical application.


Subject(s)
Annulus Fibrosus/cytology , Mechanical Phenomena , Tissue Engineering , Tissue Scaffolds , Materials Testing , Stress, Mechanical
5.
ACS Biomater Sci Eng ; 2(10): 1752-1762, 2016 Oct 10.
Article in English | MEDLINE | ID: mdl-33440473

ABSTRACT

Oxygen inhibition is a phenomenon that directly impacts the print fidelity of 3D biofabricated and photopolymerized hydrogel constructs. It typically results in the undesirable physical collapse of fabricated constructs due to impaired cross-linking, and is an issue that generally remains unreported in the literature. In this study, we describe a systematic approach to minimizing oxygen inhibition in photopolymerized gelatin-methacryloyl (Gel-MA)-based hydrogel constructs, by comparing a new visible-light initiating system, Vis + ruthenium (Ru)/sodium persulfate (SPS) to more conventionally adopted ultraviolet (UV) + Irgacure 2959 system. For both systems, increasing photoinitiator concentration and light irradiation intensity successfully reduced oxygen inhibition. However, the UV + I2959 system was detrimental to cells at both high I2959 concentrations and UV light irradiation intensities. The Vis + Ru/SPS system yielded better cell cyto-compatibility, where encapsulated cells remained >85% viable even at high Ru/SPS concentrations and visible-light irradiation intensities for up to 21 days, further highlighting the potential of this system to biofabricate cell-laden constructs with high shape fidelity, cell viability, and metabolic activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...