Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 650: 123693, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38081555

ABSTRACT

Optimizing a sustained-release drug delivery system for the treatment of cystic fibrosis (CF) is crucial for decreasing the dosing frequency and improving patients' compliance with the treatment regimen. In the current work, we developed an injectable poly(D,L-lactide-co-glycolide) (PLGA) microparticle formulation loaded with ivacaftor, a cystic fibrosis transmembrane conductance regulator (CFTR) potentiator that increases the open probability of the CFTR anion channel, using a single emulsion solvent evaporation technique. We aimed to study the effect of different parameters on the characteristics of the prepared formulations to select an optimized microparticle formulation to be used in an in vivo pharmacokinetic study in mice. First, a suite of ivacaftor-loaded microparticles were prepared using different formulation parameters in order to study the effect of varying these parameters on microparticle size, morphology, drug loading, encapsulation efficiency, and in vitro release profiles. Prepared microparticles were spherical with diameters ranging from 1.91-6.93 µm, percent drug loading (% DL) of 3.91-10.3%, percent encapsulation efficiencies (% EE) of 26.6-100%, and an overall slow cumulative release profile. We selected the formulation that demonstrated optimal combined % DL and % EE values (8.25 and 90.7%, respectively) for further studies. These microparticles had an average particle size of 6.83 µm and a slow tri-phasic in vitro release profile (up to 6 weeks). In vivo pharmacokinetic studies in mice showed that the subcutaneously injected microparticles resulted in steady plasma levels of ivacaftor over a period of 28 days, and a 6-fold increase in AUC 0 - t (71.6 µg/mL*h) compared to the intravenously injected soluble ivacaftor (12.3 µg/mL*h). Our results suggest that this novel ivacaftor-loaded microparticle formulation could potentially eliminate the need for the frequent daily administration of ivacaftor to people with CF thus improving their compliance and ensuring successful treatment outcomes.


Subject(s)
Cystic Fibrosis , Humans , Mice , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis Transmembrane Conductance Regulator , Dioxanes , Particle Size
2.
Pharmaceutics ; 14(8)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015353

ABSTRACT

Breast cancer is the most widespread cancer in women with rising incidence, prevalence, and mortality in developed regions. Most breast cancers (80%) are estrogen receptor-positive, indicating that disease progression could be controlled by estrogen inhibition in the breast tissue. However, drug resistance limits the benefits of this approach. Combinatorial treatment could overcome the resistance and improve the outcome of breast cancer treatment. In the current study, we prepared letrozole-(LTZSPs) and quercetin-loaded spanlastics (QuSPs) using different edge activators-Tween 80, Brij 35, and Cremophor RH40-with different concentrations. The spanlastics were evaluated for their average particles size, surface charge, and percent encapsulation efficiency. The optimized formulations were further examined using transmission electron microscopy, Fourier transform infrared spectroscopy, in vitro drug release and ex vivo skin permeation studies. The prepared spherical LTZSPs and QuSPs had average particle sizes ranged between 129-310 nm and 240-560 nm, respectively, with negative surface charge and high LTZ and Qu encapsulation (94.3-97.2% and 97.9-99.6%, respectively). The in vitro release study of LTZ and Qu from the selected formulations showed a sustained drug release for 24 h with reasonable flux and permeation through the rat skin. Further, we evaluated the in vitro cytotoxicity, cell cycle analysis, and intracellular reactive oxygen species (ROS) of the combination therapy of letrozole and quercetin either in soluble form or loaded in spanlastics against MCF-7 breast cancer cells. The LTZSPs and QuSPs combination was superior to the individual treatments and the soluble free drugs in terms of in vitro cytotoxicity, cell cycle analysis, and ROS studies. These results confirm the potential of LTZSPs and QuSPs combination for transdermal delivery of drugs for enhanced breast cancer management.

3.
Drug Des Devel Ther ; 16: 1811-1825, 2022.
Article in English | MEDLINE | ID: mdl-35719212

ABSTRACT

Background: Inflammation is the keystone in the disease's pathological process in response to any damaging stimuli. Therefore, any agent that inhibits the inflammatory response is under focus, either a drug or a bioactive compound. Selenium nanoparticles have drawn attention in various biomedical applications, including the anti-inflammatory activity. Purpose: In the current study, we aimed to evaluate the capacity of different surface coating materials (soybean lecithin, PEG 6000, and ß-cyclodextrin) to enhance the anti-inflammatory activity of the synthesized selenium nanoparticles (SeNPs). The capability of the coated SeNPs to adsorb indomethacin (IND) on their surfaces compared to the uncoated SeNPs was also evaluated. Methods: SeNPs were synthesized, coated with different materials, and characterized in vitro using X-ray diffraction, UV-Vis spectrophotometer, FTIR, SEM, TEM, and particle size and zeta potential measurements. The in vivo anti-inflammatory activity of the uncoated/coated SeNPs loaded into hydrogel was evaluated using a carrageenan-induced paw edema rat model. The effect of SeNPs surface coatings was further evaluated for IND loading capacity. Results: Our findings proved the superior anti-inflammatory activity of all coated SeNPs compared to the uncoated SeNPs, especially with ß-cyclodextrin surface coating. Regarding the IND loading capacity of the prepared uncoated/coated SeNPs, the amount of drug loaded was 0.12, 1.12, 0.3, and 0.14 µg IND/µg SeNPs for the uncoated, lecithin-, PEG- and ß-CD-coated SeNPs, respectively. Conclusion: Surface functionalization of SeNPs can provide a synergistic therapeutic activity. Our results are promising for further investigation of the in vivo anti-inflammatory synergistic activity of the IND-loaded surface-coated SeNPs.


Subject(s)
Nanoparticles , Selenium , beta-Cyclodextrins , Animals , Anti-Inflammatory Agents/pharmacology , Lecithins , Rats , Selenium/pharmacology
4.
Pharmaceutics ; 14(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35631479

ABSTRACT

Eye inflammation is considered one of the most common co-morbidities associated with ocular disorders and surgeries. Conventional management of this condition with non-steroidal anti-inflammatory drugs as eye drops is associated with low corneal bioavailability and ocular irritancy. In the current study, we first investigated the capacity of different solvent systems to enhance the solubility of Meloxicam (MLX). Then, we prepared chitosan nanoparticles loaded with meloxicam (MLX-CS-NPs) through electrostatic interaction between the cationic chitosan and the anionic MLX using either 100% v/v polyethylene glycol 400 or 0.25% w/v tripolyphosphate solution as solvents based on the MLX solubility data. In further studies, MLX-CS-NPs were characterized in vitro and assessed for their ex vivo corneal and scleral permeability. The morphology, average particle size (195-597 nm), zeta potential (25-54 mV), and percent entrapment efficiencies (70-96%) of the prepared MLX-CS-NPs were evaluated. The in vitro release study of MLX from the selected MLX-CS-NPs showed a sustained drug release for 72 h with accepted flux and permeation through the cornea and sclera of rabbits. In the in vivo studies, MLX-CS-NPs eye drop dispersion showed enhanced anti-inflammatory activity and no ocular irritancy compared to MLX-eye drop solution. Our findings suggest the potential for using chitosan nanotechnology for ocular delivery of MLX with high contact time and activity.

5.
J Enzyme Inhib Med Chem ; 37(1): 1346-1363, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35548854

ABSTRACT

A series of novel 1,2,3-triazole-linked ciprofloxacin-chalcones 4a-j were synthesised as potential anticancer agents. Hybrids 4a-j exhibited remarkable anti-proliferative activity against colon cancer cells. Compounds 4a-j displayed IC50s ranged from 2.53-8.67 µM, 8.67-62.47 µM, and 4.19-24.37 µM for HCT116, HT29, and Caco-2 cells; respectively, whereas the doxorubicin, showed IC50 values of 1.22, 0.88, and 4.15 µM. Compounds 4a, 4b, 4e, 4i, and 4j were the most potent against HCT116 with IC50 values of 3.57, 4.81, 4.32, 4.87, and 2.53 µM, respectively, compared to doxorubicin (IC50 = 1.22 µM). Also, hybrids 4a, 4b, 4e, 4i, and 4j exhibited remarkable inhibitory activities against topoisomerase I, II, and tubulin polymerisation. They increased the protein expression level of γH2AX, indicating DNA damage, and arrested HCT116 in G2/M phase, possibly through the ATR/CHK1/Cdc25C pathway. Thus, the novel ciprofloxacin hybrids could be exploited as potential leads for further investigation as novel anticancer medicines to fight colorectal carcinoma.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Chalcone/pharmacology , Chalcones/metabolism , Chalcones/pharmacology , Ciprofloxacin/pharmacology , DNA Damage , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type II/metabolism , Doxorubicin/pharmacology , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Polymerization , Structure-Activity Relationship , Triazoles/pharmacology , Tubulin/metabolism
6.
Drug Deliv Transl Res ; 12(7): 1684-1696, 2022 07.
Article in English | MEDLINE | ID: mdl-34635984

ABSTRACT

Endometrial cancer is the most common gynecological cancer that affects the female reproductive organs. The standard therapy for EC for the past two decades has been chemotherapy and/or radiotherapy. PD98059 is a reversible MEK inhibitor that was found in these studies to increase the cytotoxicity of paclitaxel (PTX) against human endometrial cancer cells (Hec50co) in a synergistic and dose-dependent manner. Additionally, while PD98059 arrested Hec50co cells at the G0/G1 phase, and PTX increased accumulation of cells at the G2/M phase, the combination treatment increased accumulation at both the G0/G1 and G2/M phases at low PTX concentrations. We recently developed poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) modified with polyethylene glycol (PEG) and coated with polyamidoamine (PAMAM) (referred to here as PGM NPs) which have favorable biodistribution profiles in mice, compared to PD98059 solution. Here, in order to enhance tissue distribution of PD98059, PD98059-loaded PGM NPs were prepared and characterized. The average size, zeta potential, and % encapsulation efficiency (%EE) of these NPs was approximately 184 nm, + 18 mV, and 23%, respectively. The PD98059-loaded PGM NPs released ~ 25% of the total load within 3 days in vitro. In vivo murine studies revealed that the pharmacokinetics and biodistribution profile of intravenous (IV) injected PD98059 was improved when delivered as PD98059-loaded PGM NPs as opposed to soluble PD98059. Further investigation of the in vivo efficacy and safety of this formulation is expected to emphasize the potential of its clinical application in combination with commercial PTX formulations against different cancers.


Subject(s)
Endometrial Neoplasms , Nanoparticles , Animals , Cell Line, Tumor , Drug Carriers , Endometrial Neoplasms/drug therapy , Female , Flavonoids , Humans , Mice , Mitogen-Activated Protein Kinase Kinases , Paclitaxel , Polyamines , Polyethylene Glycols , Protein Kinase Inhibitors , Tissue Distribution
7.
Int J Pharm ; 606: 120876, 2021 Sep 05.
Article in English | MEDLINE | ID: mdl-34252520

ABSTRACT

Melanoma, the most malignant form of skin cancer, shows resistance to traditional anticancer drugs including paclitaxel (PTX). Furthermore, over 50% of melanoma cases express the BRAFV600E mutation which activates the MAPK pathway increasing cell proliferation and survival. In the current study, we investigated the capacity of the combination therapy of PTX and the MAPK inhibitor, PD98059, to enhance the cytotoxicity of PTX against melanoma and therefore improve treatment outcomes. Synergistic in vitro cytotoxicity was observed when soluble PTX and PD98059 were used to treat the A375 melanoma cell line as evidenced by a significant reduction in the cell viability and IC50 value for PTX. Then, in further studies, TPGS-emulsified PD98059-loaded PLGA nanoparticles (NPs) were prepared, characterized in vitro and assessed for therapeutic efficacy when used in combination with soluble PTX. The average particle size (180 nm d.), zeta potential (-34.8 mV), polydispersity index (0.081), encapsulation efficiency (20%), particle yield (90.8%), and drug loading (6.633 µg/mg) of the prepared NPs were evaluated. Also, cellular uptake and in vitro cytotoxicity studies were performed with these PD98059-loaded NPs and compared to soluble PD98059. The PD98059-loaded NPs were superior to soluble PD98059 in terms of both cellular uptake and in vitro cytotoxicity in A375 cells. In in vivo studies, using A375 challenged mice, we report improved survival in mice treated with soluble PTX and PD98059-loaded NPs. Our findings suggest the potential for using this combinatorial therapy in the management of patients with metastatic melanoma harboring the BRAF mutation as a means to improve survival outcomes.


Subject(s)
Melanoma , Nanoparticles , Animals , Cell Line, Tumor , Flavonoids , Humans , Mice , Mitogen-Activated Protein Kinase Kinases , Paclitaxel , Particle Size , Proto-Oncogene Proteins B-raf/genetics
8.
Mol Pharm ; 17(9): 3643-3648, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32786958

ABSTRACT

Sympathetic excitation contributes to clinical deterioration in systolic heart failure (HF). Significant inhibition of hypothalamic paraventricular nucleus (PVN) ERK1/2 signaling and a subsequent reduction of plasma norepinephrine (NE) levels in HF rats were achieved 2 weeks after a single subcutaneous injection of PD98059-loaded polymeric microparticles, without apparent adverse events, while blank microparticles had no effect. Similar reductions in plasma NE, a general indicator of sympathetic excitation, were previously achieved in HF rats by intracerebroventricular infusion of PD98059 or genetic knockdown of PVN ERK1/2 expression. This study presents a clinically feasible therapeutic approach to the central abnormalities contributing to HF progression.


Subject(s)
Heart Failure/drug therapy , MAP Kinase Signaling System/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Pharmaceutical Preparations/administration & dosage , Animals , Chemistry, Pharmaceutical/methods , Disease Models, Animal , Norepinephrine/metabolism , Paraventricular Hypothalamic Nucleus/metabolism , Rats , Signal Transduction/drug effects
9.
Int J Nanomedicine ; 12: 759-777, 2017.
Article in English | MEDLINE | ID: mdl-28176951

ABSTRACT

In the present study, silver nanoparticles (AgNPs) were synthesized via biological reduction of silver nitrate using extract of the fungus Fusarium verticillioides (green chemistry principle). The synthesized nanoparticles were spherical and homogenous in size. AgNPs were coated with polyethylene glycol (PEG) 6000, sodium dodecyl sulfate (SDS), and ß-cyclodextrin (ß-CD). The averaged diameters of AgNPs were 19.2±3.6, 13±4, 14±4.4, and 15.7±4.8 nm, for PEG-, SDS-, and ß-CD-coated and uncoated AgNPs, respectively. PEG-coated AgNPs showed greater stability as indicated by a decreased sedimentation rate of particles in their water dispersions. The antibacterial activities of different AgNPs dispersions were investigated against Gram-positive bacteria (methicillin-sensitive and methicillin-resistant Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli) by determination of the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs). MIC and MBC values were in the range of 0.93-7.5 and 3.75-15 µg/mL, respectively, which were superior to the reported values in literature. AgNPs-loaded hydrogels were prepared from the coated-AgNPs dispersions using several gelling agents (sodium carboxymethyl cellulose [Na CMC], sodium alginate, hydroxypropylmethyl cellulose, Pluronic F-127, and chitosan). The prepared formulations were evaluated for their viscosity, spreadability, in vitro drug release, and antibacterial activity, and the combined effect of the type of surface coating and the polymers utilized to form the gel was studied. The in vivo wound-healing activity and antibacterial efficacy of Na CMC hydrogel loaded with PEG-coated AgNPs in comparison to the commercially available silver sulfadiazine cream (Dermazin®) were evaluated. Superior antibacterial activity and wound-healing capability, with normal skin appearance and hair growth, were demonstrated for the hydrogel formulations, as compared to the silver sulfadiazine cream. Histological examination of the treated skin was performed using light microscopy, whereas the location of AgNPs in the skin epidermal layers was visualized using transmission electron microscopy.


Subject(s)
Coated Materials, Biocompatible/pharmacology , Fusarium/chemistry , Hydrogels/chemistry , Metal Nanoparticles/chemistry , Silver/administration & dosage , Silver/pharmacology , Administration, Topical , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacology , Escherichia coli/drug effects , Female , Metal Nanoparticles/ultrastructure , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Microbial Sensitivity Tests , Particle Size , Skin/drug effects , Skin/microbiology , Skin/pathology , Skin/ultrastructure , Spectrophotometry, Ultraviolet , Static Electricity , Wound Healing/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...