Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biochem Mol Toxicol ; 35(3): e22676, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33315275

ABSTRACT

The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.


Subject(s)
Hepatocytes/metabolism , Liver/metabolism , Magnesium Oxide/toxicity , Nanoparticles/toxicity , Organoids/metabolism , Valproic Acid/adverse effects , Hepatocytes/pathology , Humans , Liver/pathology , Organoids/pathology , Valproic Acid/pharmacology
3.
Sci Rep ; 10(1): 18033, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093563

ABSTRACT

The blood-brain barrier (BBB) is an efficient barrier for molecules and drugs. Multicellular 3D spheroids display reproducible BBB features and functions. The spheroids used here were composed of six brain cell types: Astrocytes, pericytes, endothelial cells, microglia cells, oligodendrocytes, and neurons. They form an in vitro BBB that regulates the transport of compounds into the spheroid. The penetration of fluorescent ultrasmall gold nanoparticles (core diameter 2 nm; hydrodynamic diameter 3-4 nm) across the BBB was studied as a function of time by confocal laser scanning microscopy, with the dissolved fluorescent dye (FAM-alkyne) as a control. The nanoparticles readily entered the interior of the spheroid, whereas the dissolved dye alone did not penetrate the BBB. We present a model that is based on a time-dependent opening of the BBB for nanoparticles, followed by a rapid diffusion into the center of the spheroid. After the spheroids underwent hypoxia (0.1% O2; 24 h), the BBB was more permeable, permitting the uptake of more nanoparticles and also of dissolved dye molecules. Together with our previous observations that such nanoparticles can easily enter cells and even the cell nucleus, these data provide evidence that ultrasmall nanoparticle can cross the blood brain barrier.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/metabolism , Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/administration & dosage , Models, Biological , Spheroids, Cellular/metabolism , Biological Transport , Cells, Cultured , Endothelial Cells/metabolism , Humans , Metal Nanoparticles/chemistry , Pericytes/metabolism
4.
Sci Rep ; 10(1): 9766, 2020 06 17.
Article in English | MEDLINE | ID: mdl-32555384

ABSTRACT

The blood-brain barrier (BBB) is a dynamic component of the brain-vascular interface that maintains brain homeostasis and regulates solute permeability into brain tissue. The expression of tight junction proteins between adjacent endothelial cells and the presence of efflux proteins prevents entry of foreign substances into the brain parenchyma. BBB dysfunction, however, is evident in many neurological disorders including ischemic stroke, trauma, and chronic neurodegenerative diseases. Currently, major contributors to BBB dysfunction are not well understood. Here, we employed a multicellular 3D neurovascular unit organoid containing human brain microvascular endothelial cells, pericytes, astrocytes, microglia, oligodendrocytes and neurons to model the effects of hypoxia and neuroinflammation on BBB function. Organoids were cultured in hypoxic chamber with 0.1% O2 for 24 hours. Organoids cultured under this hypoxic condition showed increased permeability, pro-inflammatory cytokine production, and increased oxidative stress. The anti-inflammatory agents, secoisolariciresinol diglucoside and 2-arachidonoyl glycerol, demonstrated protection by reducing inflammatory cytokine levels in the organoids under hypoxic conditions. Through the assessment of a free radical scavenger and an anti-inflammatory endocannabinoid, we hereby report the utility of the model in drug development for drug candidates that may reduce the effects of ROS and inflammation under disease conditions. This 3D organoid model recapitulates characteristics of BBB dysfunction under hypoxic physiological conditions and when exposed to exogenous neuroinflammatory mediators and hence may have potential in disease modeling and therapeutic development.


Subject(s)
Blood-Brain Barrier/pathology , Endothelium, Vascular/pathology , Hypoxia/physiopathology , Inflammation/physiopathology , Models, Biological , Neurons/pathology , Organoids/pathology , Anti-Inflammatory Agents/pharmacology , Astrocytes/drug effects , Astrocytes/metabolism , Astrocytes/pathology , Biological Transport , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Cell Membrane Permeability , Cytokines/metabolism , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Humans , Neurons/drug effects , Neurons/metabolism , Organoids/drug effects , Organoids/metabolism , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...