Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Neurosci Lett ; 600: 127-31, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26067406

ABSTRACT

In this study, we investigated the effect of local scalp cooling on corticomotor excitability with transcranial magnetic simulation (TMS). Participants (healthy male adults, n=12) were first assessed with TMS to derive baseline measure of excitability from motor evoked potentials (MEPs) using the right first dorsal interosseous as the target muscle. Then, local cooling was induced on the right hemi-scalp (upper frontal region ∼ 15 cm(2)) by means of a cold wrap. The cooling was maintained for 10-15 min to get a decrease of at least 10°C from baseline temperature. In the post-cooling period, both scalp temperature and MEPs were reassessed at specific time intervals (i.e., T0, T10, T20 and T30 min). Scalp surface temperatures dropped on average by 12.5°C from baseline at T0 (p<0.001) with partial recovery at T10 (p<0.05) and full recovery at T20. Parallel analysis of post-cooling variations in MEP amplitude revealed significant reductions relative to baseline at T0, T10 and T20. No concurrent change in MEP latency was observed. A secondary control experiment was performed in a subset of participants (n=5) to account for the mild discomfort associated with the wrapping procedure without the cooling agent. Results showed no effect on any of the dependent variables (temperature, MEP amplitude and latency). To our knowledge, this report provides the first neurophysiological evidence linking changes in scalp temperature with lasting changes in corticomotor excitability.


Subject(s)
Evoked Potentials, Motor , Hypothermia, Induced , Motor Cortex/physiology , Scalp/physiology , Adult , Body Temperature , Humans , Male , Muscle, Skeletal/physiology , Transcranial Magnetic Stimulation , Young Adult
2.
Brain Stimul ; 8(3): 509-14, 2015.
Article in English | MEDLINE | ID: mdl-25686527

ABSTRACT

BACKGROUND: Transcranial direct current simulation (tDCS) is a non-invasive neuromodulation technique that has become increasingly popular as a potential therapeutic method for a variety of brain disorders. Since the treatment outcome may depend on the current density delivered to the brain cortical region, a significant challenge is to control the current dose reaching the cortical region. OBJECTIVE AND METHODS: This study aims to investigate the effect of temperature on current delivery to the brain. We devised a method for modulating the amount of current delivered to the brain by changing the temperature of the scalp. We developed analytical and numerical models that describe the relationship between temperature and electrical properties of the scalp based on the following mechanisms: ion mobility and blood perfusion in scalp. RESULTS AND CONCLUSIONS: The current delivery to brain was investigated by changing the temperature between two electrodes that are attached to the surface of the scalp, within a tolerable physiological range. Results show that by increasing the temperature between two electrodes, a higher portion of current is shunted via the scalp and the proportion of the current that penetrates the scalp and skull into brain is decreased. On the other hand, cooling the area between two electrodes on the scalp increases the current delivery to the cortical region of the brain. Our results show that cooling the scalp during tDCS can be considered as a possible way to effectively control the current delivery to the brain and increase the efficacy of tDCS.


Subject(s)
Transcranial Direct Current Stimulation/methods , Algorithms , Brain/physiology , Electric Conductivity , Electrodes , Electrophysiological Phenomena/physiology , Humans , Models, Theoretical , Regional Blood Flow/physiology , Scalp/blood supply , Temperature , Transcranial Direct Current Stimulation/instrumentation , Transcranial Direct Current Stimulation/statistics & numerical data
3.
Phys Med Biol ; 59(15): 4137-47, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25003941

ABSTRACT

The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a 'virtual lesion' in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm( - 1) and exceeded 1.0 V cm( - 1) in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor's necrotic core and in some parts of the gray matter-white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.


Subject(s)
Brain/physiology , Electricity , Glioblastoma/therapy , Transcranial Direct Current Stimulation/methods , Brain Waves , Humans , Models, Neurological , Transcranial Direct Current Stimulation/adverse effects
4.
PLoS One ; 8(2): e57330, 2013.
Article in English | MEDLINE | ID: mdl-23468970

ABSTRACT

Both biophysical and neurophysiological aspects need to be considered to assess the impact of electric fields induced by transcranial current stimulation (tCS) on the cerebral cortex and the subsequent effects occurring on scalp EEG. The objective of this work was to elaborate a global model allowing for the simulation of scalp EEG signals under tCS. In our integrated modeling approach, realistic meshes of the head tissues and of the stimulation electrodes were first built to map the generated electric field distribution on the cortical surface. Secondly, source activities at various cortical macro-regions were generated by means of a computational model of neuronal populations. The model parameters were adjusted so that populations generated an oscillating activity around 10 Hz resembling typical EEG alpha activity. In order to account for tCS effects and following current biophysical models, the calculated component of the electric field normal to the cortex was used to locally influence the activity of neuronal populations. Lastly, EEG under both spontaneous and tACS-stimulated (transcranial sinunoidal tCS from 4 to 16 Hz) brain activity was simulated at the level of scalp electrodes by solving the forward problem in the aforementioned realistic head model. Under the 10 Hz-tACS condition, a significant increase in alpha power occurred in simulated scalp EEG signals as compared to the no-stimulation condition. This increase involved most channels bilaterally, was more pronounced on posterior electrodes and was only significant for tACS frequencies from 8 to 12 Hz. The immediate effects of tACS in the model agreed with the post-tACS results previously reported in real subjects. Moreover, additional information was also brought by the model at other electrode positions or stimulation frequency. This suggests that our modeling approach can be used to compare, interpret and predict changes occurring on EEG with respect to parameters used in specific stimulation configurations.


Subject(s)
Electroencephalography/methods , Models, Biological , Scalp/physiology , Biophysics , Brain/physiology , Humans
5.
Neuroimage ; 70: 48-58, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23274187

ABSTRACT

The electric field in the cortex during transcranial current stimulation was calculated based on a realistic head model derived from structural MR images. The aim of this study was to investigate the effect of tissue heterogeneity and of the complex cortical geometry on the electric field distribution. To this end, the surfaces separating the different tissues were represented as accurately as possible, particularly the cortical surfaces. Our main finding was that the complex cortical geometry combined with the high conductivity of the CSF which covers the cortex and fills its sulci gives rise to a very distinctive electric field distribution in the cortex, with a strong normal component confined to the bottom of sulci under or near the electrodes and a weaker tangential component that covers large areas of the gyri that lie near each electrode in the direction of the other electrode. These general features are shaped by the details of the sulcal and gyral geometry under and between the electrodes. Smaller electrodes resulted in a significant improvement in the focality of the tangential component but not of the normal component, when focality is defined in terms of percentages of the maximum values in the cortex. Experimental validation of these predictions could provide a better understanding of the mechanisms underlying the acute effects of tCS.


Subject(s)
Cerebral Cortex/physiology , Electric Stimulation , Brain Mapping , Cerebral Cortex/anatomy & histology , Electric Stimulation/methods , Electrophysiological Phenomena , Humans , Models, Neurological
6.
IEEE Trans Neural Syst Rehabil Eng ; 21(3): 333-45, 2013 May.
Article in English | MEDLINE | ID: mdl-22949089

ABSTRACT

In this paper, we provide a broad overview of models and technologies pertaining to transcranial current brain stimulation (tCS), a family of related noninvasive techniques including direct current (tDCS), alternating current (tACS), and random noise current stimulation (tRNS). These techniques are based on the delivery of weak currents through the scalp (with electrode current intensity to area ratios of about 0.3-5 A/m2) at low frequencies (typically < 1 kHz) resulting in weak electric fields in the brain (with amplitudes of about 0.2-2 V/m). Here we review the biophysics and simulation of noninvasive, current-controlled generation of electric fields in the human brain and the models for the interaction of these electric fields with neurons, including a survey of in vitro and in vivo related studies. Finally, we outline directions for future fundamental and technological research.


Subject(s)
Action Potentials/physiology , Brain/physiology , Models, Neurological , Nerve Net/physiology , Neurons/physiology , Transcranial Magnetic Stimulation/methods , Action Potentials/radiation effects , Animals , Biotechnology/methods , Brain/radiation effects , Computer Simulation , Electromagnetic Fields , Humans , Nerve Net/radiation effects , Neurons/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL
...