Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(3): e25621, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38863879

ABSTRACT

Enset (Ensete ventricosum (Welw.) Cheesman) is an indigenous multipurpose plant in Ethiopia. More than 20 % of people in Ethiopia rely on enset for their subsistence livelihood. Its fermentation produces a starchy food named Kocho, which is yet poorly studied. In this study, physicochemical and microbial community dynamics of Kocho fermented from different enset varieties (Maziya, Genna, and Arkiya) were collected at Dawro Zone (Southern Ethiopia). Samples were collected at various fermentation times (days 1-60) for physicochemical and microbial (culture-dependent and culture-independent) characterization. Results showed that increasing fermentation time has a significantly strong positive (R2 = 0.768, p = 0.004) correlation between titrable acidity, and a significantly strong negative association with pH (R2 = -0.715, p = 0.009), moisture (R2 = -0.982, p < 0.05), ash (R2 = -0.932, p < 0.05), fat (R2 = -0.861, p < 0.05), fiber (R2 = -0.981, p < 0.05) and carbohydrate (R2 = -0.994, p < 0.001) contents. An increasing or decreasing trend of physicochemical parameters observed during enset fermentation is significantly associated with microbial community dynamics. Shifts of microbial community observed during culture-dependent analysis were also confirmed by metagenomic results. During fermentation, Firmicutes (39-68 %) > Proteobacteria (7-53 %) > Cyanobacteria (7-24 %) were dominant phyla in the three enset varieties. Gamma (traditional starter culture) is dominated by Lactobacillus plantrum and Lactobacillus manihotivorans most probably the two species that play a significant role in initiating enset fermentation.

2.
Primates ; 64(5): 513-526, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37369925

ABSTRACT

Studying the diet and feeding behavior of primates is essential to understanding their ecology and designing effective conservation plans. Despite decades of study on the hamadryas baboon (Papio hamadryas) in lowland habitats, little is known about the feeding ecology of this species in highland ecosystems. To address this empirical gap, we tracked temporal changes in vegetation abundance and their relation to the dietary choices of hamadryas baboons in highland habitat at Borena-Sayint National Park (BSNP) in northern Ethiopia. We performed behavioral scan sampling on a focal study band of 21-37 hamadryas baboons over a 12-month period. We found that mature and young leaves were the most abundant plant parts throughout the year, while fruits and flowers were the least abundant, with significant seasonal variation that followed the bimodal pattern of rainfall characteristic of the Ethiopian highlands ecosystem. The annual diet of hamadryas baboons at BSNP consisted mostly of fruits (32.0%) and graminoid blades (21.2%), and included 52 food species across 22 families of plants and three families of animals. Food raided from nearby farms accounted for 8.8% of their diet. The availability of fruits and flowers was positively correlated with their consumption, suggesting that these are preferred foods, whereas graminoid blades, and other leaves, appeared to be less preferred foods. The feeding ecology of hamadryas baboons at BSNP differs considerably from that of lowland populations. The well-studied lowland hamadryas baboons in Awash National Park obtain much of their diet from Acacia species and palm fruit, whereas those at BSNP, where Acacia trees are rare and palms are absent, relied on Olinia rochetiana and Rosa abyssinica for a combined 27% of their annual diet. The reliance of hamadryas baboons at BSNP on cultivated crops for nearly one-tenth of their diet leads to conflict with humans and warrants more detailed study so that this issue can be addressed in conservation plans for the area.


Subject(s)
Ecosystem , Papio hamadryas , Humans , Animals , Ethiopia , Parks, Recreational , Ecology
3.
Curr Biol ; 33(10): R382-R384, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37220724

ABSTRACT

Vivek V. Venkataraman introduces gelada monkeys.


Subject(s)
Theropithecus , Animals
4.
Proc Natl Acad Sci U S A ; 119(50): e2206635119, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36490314

ABSTRACT

Ethiopia is home to one of the richest and most unique assemblages of fauna and flora on the African continent. Contained within its borders are two major centers of endemism, the mesic Roof of Africa (also known as the Ethiopian Highlands) and the arid Horn of Africa, resulting from the country's varied topography and consequent geographic isolation. These centers of endemism are crucial to global conservation as evidenced by their classification within the Eastern Afromontane and Horn of Africa biodiversity hotspots, respectively. Ethiopia's diverse ecosystems and the biodiversity they contain are increasingly threatened by climate change and the growing impacts of Africa's second largest human and largest livestock populations. In this paper, we focus on several key areas of recent and ongoing research on Ethiopian biodiversity that have broadened our understanding of nature and its conservation in Africa. Topics explored include the behavioral ecology of Ethiopia's large social mammals, the ecology and conservation of its unique coffee forests, and Ethiopian approaches to community conservation, fortress conservation, and nature-based solutions. We also highlight the increasing prominence of Ethiopian scientists in studies of the country's biodiversity in recent decades. We suggest promising avenues for future research in evolutionary biology, ecology, systematics, and conservation in Ethiopia and discuss how recent and ongoing work in Ethiopia is helping us better understand and conserve nature in the human-dominated landscapes of Africa and other tropical regions today.


Subject(s)
Biodiversity , Ecosystem , Humans , Animals , Ecology , Forests , Mammals , Ethiopia , Conservation of Natural Resources
5.
Environ Res ; 214(Pt 3): 114086, 2022 11.
Article in English | MEDLINE | ID: mdl-35970377

ABSTRACT

Currently, the depletion of natural resources and contamination of the surrounding environment demand a paradigm shift to resource recycling and reuse. In this regard, phosphorus (P) is a model nutrient that possesses the negative traits of depletion (will be exhausted in the next 100 years) and environmental degradation (causes eutrophication and climate change), and this has prompted the scientific community to search for options to solve P-related problems. To date, P recovery in the form of struvite from wastewater is one viable solution suggested by many scholars. Struvite can be recovered either in the form of NH4-struvite (MgNH4PO4•6H2O) or K-struvite (MgKPO4•6H2O). From struvite, K (MgKPO4•6H2O) and N (MgNH4PO4•6H2O) are important nutrients for plant growth, but N is more abundant in the environment than K (the soil's most limited nutrient), which requires a systematic approach during P recovery. Although K-struvite recovery is a promising approach, information related to its crystallization is deficient. Here, we present the general concept of P recovery as struvite and details about K-struvite, such as the source of nutrients, factors (pH, molar ratio, supersaturation, temperature, and seeding), advantages (environmental, economic, and social), disadvantages (heavy metals, pathogenic organisms, and antibiotic resistance genes), and challenges (scale-up and acceptance). Overall, this study provides insights into state-of-the-art K-struvite recovery from wastewater as a potential slow-release fertilizer that can be used as a macronutrient (P-K-Mg) source for plants as commercial grade-fertilizers.


Subject(s)
Phosphorus , Wastewater , Fertilizers , Phosphates/chemistry , Phosphorus/chemistry , Struvite , Waste Disposal, Fluid , Wastewater/chemistry
6.
Primates ; 63(2): 151-160, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35038067

ABSTRACT

Given the current rate of habitat degradation and loss in the tropics, data on primate population densities and habitat use are indispensable for assessing conservation status and designing feasible management plans for primates. The Omo River guereza (Colobus guereza guereza) is a subspecies of the eastern black-and-white colobus monkey endemic to the western Rift Valley forests of Ethiopia. Their restricted distribution along with habitat loss and hunting within their range render them vulnerable to local extirpation and extinction. Furthermore, there are no published data available on the population status and habitat use patterns of the Omo River guereza. We therefore aimed to assess the population size of Omo River guerezas in different habitats (Erica-Juniperus mixed forest, mixed plantation forest, undisturbed natural forest, disturbed natural forest) using transect surveys at Wof-Washa Natural State Forest (WWNSF) in central Ethiopia. Our surveys covered a cumulative distance of 88.5 km in four different habitats, during which we recorded a total of 140 Omo River guereza groups. The average group density was 14.3 groups/km2, average individual density was 94.4 individuals/km2, and we estimated the total population size within WWNSF to be 2549 individuals. The sex ratio of the population was split evenly between males and females, though the age classes skewed strongly towards adults. Of the habitats surveyed, the highest group encounter rate (1.83 groups/km) occurred in the disturbed natural forest. However, the highest individual density (110.1 individuals/km2) was recorded in undisturbed natural forest. Still, sizable densities (group and individual) were recorded in three of the disturbed habitats (disturbed natural forest, mixed plantation forest, and to a lesser extent Erica-Juniperus mixed forest). Our study offers the first baseline information with which to compare future population density estimates and habitat use in the range of Omo River guerezas.


Subject(s)
Colobus , Rivers , Animals , Ecosystem , Ethiopia , Female , Male , Population Density
7.
Ecol Lett ; 25(4): 711-715, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34957647

ABSTRACT

With open-access publishing authors often pay an article processing charge and subsequently their article is freely available online. These charges are beyond the reach of most African academics. Thus, the trend towards open-access publishing will shift the business model from a pay-wall model, where access to literature is limited, to a pay-to-publish one, where African scholars cannot afford to publish. We explore the costs of publishing and the ability of African scholars to afford to publish via open access in top journals. Three-quarters of the 40 top ecology journals required payment for open-access publishing (average cost $3150). Paying such fees is a hardship for African scholars as grant funding is not available and it is not feasible to pay the fees themselves as salaries are low. We encourage funders and publishers to facilitate an equitable publishing model that allows African scholars to make their research available through open-access publishing.


Subject(s)
Ecology , Publishing
9.
Am J Phys Anthropol ; 175(3): 513-530, 2021 07.
Article in English | MEDLINE | ID: mdl-33650680

ABSTRACT

OBJECTIVES: Although fermented food use is ubiquitous in humans, the ecological and evolutionary factors contributing to its emergence are unclear. Here we investigated the ecological contexts surrounding the consumption of fruits in the late stages of fermentation by wild primates to provide insight into its adaptive function. We hypothesized that climate, socioecological traits, and habitat patch size would influence the occurrence of this behavior due to effects on the environmental prevalence of late-stage fermented foods, the ability of primates to detect them, and potential nutritional benefits. MATERIALS AND METHODS: We compiled data from field studies lasting at least 9 months to describe the contexts in which primates were observed consuming fruits in the late stages of fermentation. Using generalized linear mixed-effects models, we assessed the effects of 18 predictor variables on the occurrence of fermented food use in primates. RESULTS: Late-stage fermented foods were consumed by a wide taxonomic breadth of primates. However, they generally made up 0.01%-3% of the annual diet and were limited to a subset of fruit species, many of which are reported to have mechanical and chemical defenses against herbivores when not fermented. Additionally, late-stage fermented food consumption was best predicted by climate and habitat patch size. It was more likely to occur in larger habitat patches with lower annual mean rainfall and higher annual mean maximum temperatures. DISCUSSION: We posit that primates capitalize on the natural fermentation of some fruits as part of a nutritional strategy to maximize periods of fruit exploitation and/or access a wider range of plant species. We speculate that these factors contributed to the evolutionary emergence of the human propensity for fermented foods.


Subject(s)
Fermented Foods , Animals , Diet , Ecosystem , Fruit , Primates
10.
Primates ; 61(6): 785-796, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32506350

ABSTRACT

Reliable data on the distribution and threats facing primate species are crucial to identifying priority sites for conservation and designing effective management plans. Boutourlini's blue monkey (Cercopithecus mitis boutourlinii) is a little-known arboreal primate endemic to the forests of western Ethiopia. This subspecies is categorized as Vulnerable on the International Union for Conservation of Nature (IUCN) Red List and the distribution of extant populations is largely unknown. To increase our knowledge of the spatial distribution and conservation status of Boutourlini's blue monkey, we carried out intensive reconnaissance surveys from January 2010 to May 2011 across approximately 40% of its potential range and conducted interviews with local people at each of the survey locations. We carried out geospatial analyses and mapped the distribution of Boutourlini's blue monkey localities with respect to elevation, protected area status, and changes in forest cover over time using ArcGIS 10.4.0. Through our surveys, we discovered 30 previously unknown Boutourlini's blue monkey populations in three administrative regions of western Ethiopia (Amhara, Oromia, and Southern Nations, Nationalities and People's Regions). A total of 34 different groups were sighted and counted at the survey sites, averaging 14.7 members (range 8-23) per group. There are now 32 Boutourlini's blue monkey populations of recently confirmed occurrence at altitudes ranging from 1039 to 2780 m asl, seven in forests of greater than 50 km2. Crop feeding by Boutourlini's blue monkeys was reported by people at seven sites and confirmed through direct observation at three of these sites. None of the known extant populations of Boutourlini's blue monkeys occur within a strictly protected area (e.g., national park) where exploitative human activities are outlawed. A complete reassessment of the distribution and conservation status of Boutourlini's blue monkey will require further surveys across the remaining approximately 60% of its potential range.


Subject(s)
Animal Distribution , Cercopithecus , Ecosystem , Altitude , Conservation of Natural Resources , Crops, Agricultural , Diet , Ethiopia
11.
Am J Primatol ; 82(4): e23074, 2020 04.
Article in English | MEDLINE | ID: mdl-31793676

ABSTRACT

Primates inhabiting human-modified landscapes often exploit matrix habitat to supplement their diet with cultivated foods, at times resulting in economic losses and conflict with local people. Understanding human-nonhuman primate interactions and the attitudes and perceptions of local people towards crop feeding species are crucial to designing effective species-based management plans. Over a 12-month period, we used scan sampling to study the consumption of cultivated foods and matrix use patterns by two habituated groups of Bale monkeys (Chlorocebus djamdjamensis), Ethiopian-endemic bamboo specialists, in two forest fragments (Kokosa and Afursa) set amidst human settlements and farmland in the southern Ethiopian Highlands. Further, we conducted interviews with local people to document their attitudes and perceptions towards Bale monkeys at the two sites. We found that Bale monkeys at Kokosa, a more degraded habitat by most measures, consumed significantly more cultivated foods than their counterparts at Afursa. Moreover, Bale monkeys at Kokosa spent significantly more time in the matrix than in the forest habitat, while monkeys at Afursa spent significantly less time in the matrix than in the forest habitat. Not surprisingly, local people displayed a more negative attitude towards monkeys inhabiting Kokosa than those inhabiting Afursa. The differences in Bale monkey cultivated food consumption and matrix use patterns-as well as in local people's attitudes and perceptions towards Bale monkeys-between Kokosa and Afursa are probably associated with differences in habitat structure, degree of habitat alteration, and land-use practices between the sites. We conclude that to ensure long-term coexistence between Bale monkeys and local people in human-modified landscapes, it is vital to incorporate nearby matrix habitats into management plans and to work closely with local communities to develop effective nonlethal crop protection strategies, thereby reducing the likelihood of negative interactions between Bale monkeys and humans.


Subject(s)
Cercopithecinae/physiology , Crops, Agricultural , Diet , Ecosystem , Adult , Aged , Animals , Attitude , Ethiopia , Feeding Behavior , Female , Forests , Humans , Male , Middle Aged
13.
PLoS One ; 13(8): e0202303, 2018.
Article in English | MEDLINE | ID: mdl-30138418

ABSTRACT

The large-bodied, terrestrial primates in the tribe Papionini are among the most intensely studied animals in the world, yet for some members of this tribe we know comparatively little about their evolutionary history and phylogeography. Geladas (Theropithecus gelada Rüppell, 1835), endemic primates of the Ethiopian highlands, are largely unstudied both in genetic diversity and intrageneric phylogeny. Currently, a northern and central subspecies and one isolated southern population are recognized, of which the central is classified as Least Concern, the northern as Vulnerable, and the southern is not yet assessed. The distribution and taxonomy of the subspecies remain poorly defined. Here, we estimate the mitochondrial DNA (mtDNA) diversity and phylogenetic relationships among gelada mtDNA lineages based on samples across the entire species range. We analysed 1.7 kb-long sequences of the mtDNA genome, spanning the cytochrome b gene and the hypervariable region I of the D-loop, derived from 162 faecal samples. We detected five major haplogroups or clades (south, central-1, central-2, north-1, north-2) which diverged between 0.67 and 0.43 million years ago, thus suggesting a rapid radiation, resulting in largely unresolved intrageneric phylogenetic relationships. Both, the northern and central demes contain two similarly valid haplogroups, each with little or no geographic segregation among respective haplogroups. Effective population sizes of the northern and central demes decreased during and after the last glacial maximum but remained stable for the southern deme, although on a very low level. The distribution of haplogroups within the geographic ranges of the putative gelada subspecies indicates that mtDNA sequence information does not allow reliable taxonomic inferences and thus is not sufficient for solving the taxonomic rank of the three demic populations, with the possible exception of the southern population. Nevertheless, due to the genetic differences all three populations deserve conservation efforts, in particular the smallest southern population.


Subject(s)
DNA, Mitochondrial , Genetic Variation , Theropithecus/genetics , Animal Distribution , Animals , Biological Evolution , Cytochromes b/genetics , Female , Haplotypes , Papio/genetics , Phylogeny , Phylogeography , Population Density
14.
BMC Evol Biol ; 18(1): 106, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29986642

ABSTRACT

BACKGROUND: Species with a restricted geographic distribution, and highly specialized habitat and dietary requirements, are particularly vulnerable to extinction. The Bale monkey (Chlorocebus djamdjamensis) is a little-known arboreal, bamboo-specialist primate endemic to the southern Ethiopian Highlands. While most Bale monkeys inhabit montane forests dominated by bamboo, some occupy forest fragments where bamboo is much less abundant. We used mitochondrial DNA (mtDNA) sequences to analyse the genetic structure and evolutionary history of Bale monkeys covering the majority of their remaining distribution range. We analysed 119 faecal samples from their two main habitats, continuous forest (CF) and fragmented forests (FF), and sequenced 735 bp of the hypervariable region I (HVI) of the control region. We added 12 orthologous sequences from congeneric vervets (C. pygerythrus) and grivets (C. aethiops) as well as animals identified as hybrids, previously collected in southern Ethiopia. RESULTS: We found strong genetic differentiation (with no shared mtDNA haplotypes) between Bale monkey populations from CF and FF. Phylogenetic analyses revealed two distinct and highly diverged clades: a Bale monkey clade containing only Bale monkeys from CF and a green monkey clade where Bale monkeys from FF cluster with grivets and vervets. Analyses of demographic history revealed that Bale monkey populations (CF and FF) have had stable population sizes over an extended period, but have all recently experienced population declines. CONCLUSIONS: The pronounced genetic structure and deep mtDNA divergence between Bale monkey populations inhabiting CF and FF are likely to be the results of hybridization and introgression of the FF population with parapatric Chlorocebus species, in contrast to the CF population, which was most likely not impacted by hybridization. Hybridization in the FF population was probably enhanced by an alteration of the bamboo forest habitat towards a more open woodland habitat, which enabled the parapatric Chlorocebus species to invade the Bale monkey's range and introgress the FF population. We therefore propose that the CF and FF Bale monkey populations should be managed as separate units when developing conservation strategies for this threatened species.


Subject(s)
Biological Evolution , Cercopithecus/genetics , Ecosystem , Genetics, Population , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Demography , Ethiopia , Genetic Variation , Geography , Haplotypes/genetics , Phylogeny , Population Density , Time Factors
15.
Microbiome ; 6(1): 84, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29729671

ABSTRACT

BACKGROUND: The gelada monkey (Theropithecus gelada), endemic to the Ethiopian highlands, is the only graminivorous primate, i.e., it feeds mainly on grasses and sedges. In spite of known dental, manual, and locomotor adaptations, the intestinal anatomy of geladas is similar to that of other primates. We currently lack a clear understanding of the adaptations in digestive physiology necessary for this species to subsist on a graminoid-based diet, but digestion in other graminivores, such as ruminants, relies heavily on the microbial community residing in the gastrointestinal (GI) system. Furthermore, geladas form complex, multilevel societies, making them a suitable system for investigating links between sociality and the GI microbiota. RESULTS: Here, we explore the gastrointestinal microbiota of gelada monkeys inhabiting an intact ecosystem and document how factors like multilevel social structure and seasonal changes in diet shape the GI microbiota. We compare the gelada GI microbiota to those of other primate species, reporting a gradient from geladas to herbivorous specialist monkeys to dietary generalist monkeys and lastly humans, the ultimate ecological generalists. We also compare the microbiotas of the gelada GI tract and the sheep rumen, finding that geladas are highly enriched for cellulolytic bacteria associated with ruminant digestion, relative to other primates. CONCLUSIONS: This study represents the first analysis of the gelada GI microbiota, providing insights into the adaptations underlying graminivory in a primate. Our results also highlight the role of social organization in structuring the GI microbiota within a society of wild animals.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Rumen/microbiology , Sheep/microbiology , Theropithecus/microbiology , Animals , Base Sequence , Diet , Digestion/physiology , Ethiopia , Gastrointestinal Tract/anatomy & histology , Sequence Analysis, DNA
16.
Am J Primatol ; 80(5): e22760, 2018 05.
Article in English | MEDLINE | ID: mdl-29664154

ABSTRACT

Studies of the effects of habitat fragmentation and degradation on primate positional behavior, strata use, and substrate utilization offer valuable insights into the behavioral and ecological flexibility of primates whose habitats have undergone extensive anthropogenic disturbance. In this study, we evaluated how positional behavior, strata use, and substrate utilization differed between Bale monkeys (Chlorocebus djamdjamensis)-bamboo-eating cercopithecids endemic to the southern Ethiopian Highlands-occupying continuous versus fragmented forests. Bale monkeys in forest fragments (where bamboo had been degraded or eradicated) spent significantly more time on the ground and in understory strata whereas those in continuous forest spent significantly more time in the middle and upper strata. Bale monkeys in forest fragments also spent significantly more time walking and galloping and significantly less time climbing than those in continuous forest. Our results suggest that, unlike the primarily arboreal Bale monkeys in continuous forest, Bale monkeys in forest fragments should be characterized as semi-terrestrial. In response to habitat disturbance in fragments, we observed a greater emphasis on terrestrial foraging and travel among Bale monkeys in these human altered habitats, which may put them at greater risk of predation and conflict with nearby human populations. Bale monkeys in fragments exhibit flexibility in their positional behavioral repertoire and their degree of terrestriality is more similar to their sister taxa in Chlorocebus than to Bale monkeys in continuous forest. These findings suggest that habitat alteration may compel Bale monkeys to exhibit semi-terrestrial behaviors crucial for their persistence in human-modified habitats. Our results contribute to a growing body of literature on primate behavioral responses to anthropogenic modification of their habitats and provide information that can contribute to the design of appropriate conservation management plans.


Subject(s)
Behavior, Animal , Cercopithecinae/physiology , Ecosystem , Adaptation, Biological , Animals , Conservation of Natural Resources , Ethiopia , Forests , Humans , Locomotion , Poaceae
17.
BMC Ecol ; 18(1): 4, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29409472

ABSTRACT

BACKGROUND: Understanding the effects of habitat modification on the feeding strategies of threatened species is essential to designing effective conservation management plans. Bale monkeys (Chlorocebus djamdjamensis) are endemic to the rapidly shrinking montane forests of the southern Ethiopian Highlands. Most populations inhabit continuous bamboo forest subsisting largely on the young leaves and shoots of a single species of bamboo. Because of habitat disturbance in recent decades, however, there are now also several dozen small populations inhabiting isolated forest fragments where bamboo has been degraded. During 12-months, we assessed Bale monkey responses to habitat degradation by comparing habitat composition, phenological patterns, and feeding ecology in a largely undisturbed continuous forest (Continuous groups A and B) and in two fragments (Patchy and Hilltop groups). RESULTS: We found that habitat quality and food availability were much lower in fragments than in continuous forest. In response to the relative scarcity of bamboo in fragments, Bale monkeys spent significantly less time feeding on the young leaves and shoots of bamboo and significantly more time feeding on non-bamboo young leaves, fruits, seeds, stems, petioles, and insects in fragments than in continuous forest. Groups in fragments also broadened their diets to incorporate many more plant species (Patchy: ≥ 47 and Hilltop: ≥ 35 species)-including several forbs, graminoids and cultivated crops-than groups in continuous forest (Continuous A: 12 and Continuous B: 8 species). Nevertheless, bamboo was still the top food species for Patchy group (30% of diet) as well as for both continuous forest groups (mean = 81%). However, in Hilltop group, for which bamboo was especially scarce, Bothriochloa radicans (Poaceae), a grass, was the top dietary species (15% of diet) and bamboo ranked 10th (2%). CONCLUSIONS: We demonstrate that Bale monkeys are more dietarily flexible than previously thought and able to cope with some degradation of their primary bamboo forest habitat. However, crop raiding and other terrestrial foraging habits more common among fragment groups may place them at greater risk of hunting by humans. Thus, longitudinal monitoring is necessary to evaluate the long-term viability of Bale monkey populations in fragmented habitats.


Subject(s)
Cercopithecinae/physiology , Conservation of Natural Resources , Diet , Ecosystem , Feeding Behavior , Animals , Endangered Species , Ethiopia , Forests
18.
Sci Rep ; 8(1): 20, 2018 01 08.
Article in English | MEDLINE | ID: mdl-29311667

ABSTRACT

Human activities can cause habitat degradation that may alter the types and quality of available food resources and thus influence the microbiomes of wild animal populations. Furthermore, seasonal shifts in food availability may cause adaptive responses in the gut microbiome to meet the need for different metabolic capabilities. Here, we demonstrate local-scale population structure in the gastrointestinal microbiotas of Chlorocebus monkeys, in southern Ethiopia, in response to varying degrees of human encroachment. We further provide evidence of adaptation to ecological conditions associated with the dry and wet seasons, and show seasonal effects to be more pronounced in areas with limited human activity. Finally, we report species-level microbiota differences between the endemic Ethiopian Bale monkey, an ecological specialist, and generalist Chlorocebus species from the same geographical region.


Subject(s)
Ecology , Gastrointestinal Microbiome , Animals , Biodiversity , Cercopithecinae , Chloroplasts/genetics , Geography , Metagenomics/methods , Microbiota , RNA, Ribosomal, 16S , Seasons
19.
Primates ; 59(2): 153-161, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29230674

ABSTRACT

Understanding the basic natural history of threatened primate taxa is crucial to developing and implementing successful conservation strategies for them. Data on feeding ecology and activity patterns are particularly important for identifying the strategies through which primates invest time and foraging effort towards survival and reproduction at a given locale. Here, we report the results of the first study of the diet and activity budget of Arsi geladas, a population of < 1000 individuals endemic to a heavily disturbed region of the southern Ethiopian Highlands and believed to represent a new taxon of geladas. We conducted our research on a band of 34 individuals belonging to five, one-male units at Indetu, eastern Arsi, Ethiopia, from August 2010 to May 2011 (excluding March 2011). Feeding accounted for 41.7% of total scans, followed by moving (20.3%), resting (19.0%), and social behavior (19.0%). Feeding and moving increased and resting and socializing decreased during the dry season when food availability was probably lower than during the wet season. Geladas ate mostly graminoid leaves (51.7% of feeding scans) though they also consumed graminoid rhizomes (24.4%), forb tubers (7.1%), forb leaves (7.1%), cactus, shrub, and tree fruits (3.6%), graminoid corms (1.7%), forb roots (1.6%), and unidentified items (3.0%). Underground foods (corms, rhizomes, roots, and tubers) accounted for 22-47% (mean = 35%) of the monthly (n = 9) diet and were eaten slightly more during the wet season than during the dry season. Contributions of human crops to the gelada diet could not be quantified without creating conflict between farmers and researchers, though we did note that geladas visited farms on 5-10% of study days. Threats from farmers, children, and dogs limited the geladas' access to crops once they entered the farms. Further research involving questionnaire surveys of farmers, direct observation of crop damage by geladas, and DNA metabarcoding of gelada feces are crucial to the development of strategies to mitigate human-gelada conflict in the densely populated Arsi Zone of Ethiopia.


Subject(s)
Diet , Ecosystem , Papio/physiology , Social Behavior , Animals , Crops, Agricultural , Environment , Ethiopia , Female , Male , Population Density , Reproduction , Seasons
20.
Am J Primatol ; 79(7)2017 07.
Article in English | MEDLINE | ID: mdl-28185282

ABSTRACT

Understanding the extent to which primates in forest fragments can adjust behaviorally and ecologically to changes caused by deforestation is essential to designing conservation management plans. During a 12-month period, we studied the effects of habitat loss and degradation on the Ethiopian endemic, bamboo specialist, Bale monkey (Chlorocebus djamdjamensis) by comparing its habitat quality, activity budget, ranging ecology and habitat use in continuous forest and two fragments. We found that habitat loss and fragmentation resulted in major differences in vegetation composition and structure between forest types. We also found that Bale monkeys in continuous forest spent more time feeding and traveling and less time resting and socializing than monkeys in fragments. Bale monkeys in continuous forest also had higher movement rates (m/hr) than monkeys in fragments. Bale monkeys in continuous forest used exclusively bamboo and mixed bamboo forest habitats while conspecifics in fragments used a greater variety of habitats including human use areas (i.e., matrix). Our findings suggest that Bale monkeys in fragments use an energy minimization strategy to cope with the lower availability of the species' primary food species, bamboo (Arundinaria alpina). We contend that Bale monkeys may retain some of the ancestral ecological flexibility assumed to be characteristic of the genus Chlorocebus, within which all extant species except Bale monkeys are regarded as ecological generalists. Our results suggest that, like other bamboo eating primates (e.g., the bamboo lemurs of Madagascar), Bale monkeys can cope with a certain threshold of habitat destruction. However, the long-term conservation prospects for Bale monkeys in fragments remain unclear and will require further monitoring to be properly evaluated.


Subject(s)
Conservation of Natural Resources , Ecology , Feeding Behavior , Haplorhini , Animals , Diet , Ecosystem , Humans , Madagascar
SELECTION OF CITATIONS
SEARCH DETAIL
...