Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(4): 4613-4626, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38313485

ABSTRACT

Industrial and academic societies have been bothered with the generation and subsequent management of residues settled out from household bleach, due to its corrosive properties. Therefore, the aim of this research was to introduce a NaOH-impregnated calcium-based solid catalyst from the aforementioned sediments for waste cooking oil transesterification. To prepare the catalyst (RC-ITB), the wet impregnation technique was followed and successfully characterized via X-ray diffraction (XRD), X-ray fluorescence(XRF), differential scanning calorimetry (DSC), Brunauer-Emmett-Teller (BET), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) methods. The study findings suggested that RC-ITB has a BET surface area of 9.312 m2 g-1 and is largely made up of calcium with its compound forms such as carbonates, hydroxides, and oxides. The evaluation of pH values verified that RC-ITB is more alkaline (i.e., pH = 12.65) relative to its precursor RC (pH = 10.66), largely attributable to OH impregnation. To study the catalytic performance, three numeric factors with three levels of treatment were used, and their influences were analyzed through a response surface approach. Accordingly, the optimal yield of biodiesel was found to be 80.04% at a reaction temperature of 61 ± 2 °C, catalyst weight of 6.33 wt %, and a molar ratio of 23.94. Moreover, FTIR analysis verified that the glycerol part of triglycerides had been replaced with a methoxyl unit. Also, the fuel quality parameters of the FAME product were examined, including density, kinematic viscosity, acid value, density, cetane number, cloud point, saponification value, and pour point; all of these values fall within the ASTM D6751-accepted limits. Thus, the findings showed that the sediments of household bleach production could be a candidate source to explore heterogeneous basic catalysts.

2.
ACS Omega ; 9(6): 6296-6304, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371778

ABSTRACT

Biodiesel is an environmentally beneficial and clean energy source that may replace fossil fuels, which are detrimental to the environment and cannot be replenished. Therefore, the physicochemical parameters of biodiesel must be determined in order to verify its quality. The cetane number is a crucial dimensionless fuel property that gauges the fuel ignition quality in power diesel engines. A higher cetane number results in a shorter ignition delay time, and vice versa. Biodiesel's cetane number may fluctuate due to a variety of fatty acid compositions, including variations in carbon chain length and the degree of unsaturation. The cetane number generally increases with increasing saturation and chain length, while it decreases as chain length is reduced and degrees of unsaturation and branching increase. This is the main reason for why alkanes possess a higher cetane number than alkenes and aromatics. The standard protocols for evaluating the cetane number of biodiesel are ASTM D613 and ISO 5165 test techniques using a monocylindrical cetane engine. However, adhering to these conventional procedures is quite challenging and time-consuming, and the cetane number test result may also be affected by the presence of certain gases and fumes. As a result, many researchers are bothered with cetane number valuation, and occasionally they skip it due to a lack of other options. Consequently, the aim of this paper is to present a set of more straightforward and relevant alternative techniques that can be applied to predict the cetane number of biodiesel when engine-based measurement is not practical. The three techniques with their designed pictographic outlooks conferred in this article include color indicator titration, aniline point, and fatty acid composition-based methods. The reported values of these procedures meet the minimum cut point of the biodiesel cetane number required by ASTM D6751 (≥47) and exhibit minimal variation from the typical standard methods. Nevertheless, the above-mentioned techniques are not applicable to other alternative biofuels except biodiesel products because they have a direct implication on the characteristics of the fatty acid profiles of different oil precursors, such as carbon chain length, degree of saturation or unsaturation, and aromaticity, which make up monoalkyl esters.

3.
Heliyon ; 9(11): e21959, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38053885

ABSTRACT

One of the main problem related with liquid bleach production from calcium hypochlorite is the amount of precipitates generated and its consequent management. As a result, academic and industrial communities have been challenged with searching of a means for its valorization. Therefore, this research explores the application of the precipitate as a viable source of Ca-based heterogeneous catalyst development for the production of waste cooking oil methyl esters for the first-time. The catalyst was prepared by dividing the precipitates into three forms, viz. raw untreated (RC), heat treated (RC-TB), and NaOH impregnated plus thermally activated (RC-ITB). The prepared catalysts were efficiently characterized by XRF, XRD, FTIR, SEM, and BET techniques. The characterization results indicated that the catalysts are mainly composed of calcium metal in the form of oxides (CaO), calcite (CaCO3) and Portlandite (Ca(OH)2), which are the promising constituents of basic catalysts. The BET inspection of RC, RC-TB, and RC-ITB revealed the specific surface area of 8.509, 9.089, and 9.312 m2/g, respectively. At the same reaction conditions, the maximum biodiesel yield of 76.05 % was achieved by RC-ITB compared to RC-TB (62.57 %) and RC (19.74 %), because it's larger specific surface area and highest basic nature (pH = 12.65 at 1:5 w/v) improves the reaction catalysis through better catalyst-substrates interactions. The lower biodiesel yield was attained through the RC catalyst due to its untreated surface, lower specific area, and weak alkaline nature (pH value = 10.66 at 1:5 w/v). Furthermore, regardless of the amount of yield, almost similar fuel properties and functional groups of the products over the coded catalysts were observed. Generally, the possibility of calcium hypochlorite precipitate as a precursor of Ca-based heterogeneous catalyst has been effectively proven in this research, which could be very important for environmental safety and industrial resource integration.

4.
Heliyon ; 9(4): e14699, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37025830

ABSTRACT

Searching for good sources of value-added lipids that can be utilized for industrial and domestic applications is getting a fast-growing attention. Hence, the exploitation of underutilized fruit species for oil production is of particular care. But, rapid and accurate characterization of oil-bearing biomass before considering it as an alternative source is essential to know the properties of interest which significantly influence biomass conversion. Instead of testing oilseed components to know their lipid reach part via extractive techniques, one of the rapid analysis methods is Fourier transform infrared spectroscopic approach. Thus, this paper aims to identify the unique characteristic bands of lipids in oilseed components confirmed via Ethiopian desert date fruit (i.e., mesocarp, endocarp, kernel and oil). While all parts of the fruit were subjected to oil extraction, it was proved that the only fatty portion containing about 40.32% wt of lipid was in its kernel. Accordingly, the only functional groups observed in the oil-rich part include = C-H stretching at 3006/7 cm-1 in aromatic and olefins of unsaturated fatty acid, symmetrical C-H stretching of aliphatics in the -CH3 groups at 2853 cm-1, C-O stretching in esters due to asymmetric vibrations of C-C(=O)-O bonds at 1159/66 cm-1, and C-H rocking vibration of methylene in alkanes at 718/23 cm-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...