Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 198: 119-127, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34963627

ABSTRACT

Cotton gauzes were grafted with a hydrogel of maltodextrin (MD) and poly(acrylic acid) (PAAc) using N-maleyl chitosan as crosslinker to obtain materials with antimicrobial properties. Reaction parameters including monomer, crosslinker, and initiator concentrations were studied. The modification with the copolymer poly(acrylic acid)-co-maltodextrin (PAAc-co-MD) was corroborated by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). The grafted gauzes (gauze-g-(PAAc-co-MD)) were able to load vancomycin and inhibit the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. In addition, the incorporation of chitosan as crosslinker showed a synergistic effect against these bacteria. The prepared gauze-g-(PAAc-co-MD) materials could be used in the biomedical area particularly as antimicrobial wound dressings.


Subject(s)
Chitosan
2.
AAPS PharmSciTech ; 20(5): 198, 2019 May 24.
Article in English | MEDLINE | ID: mdl-31127389

ABSTRACT

In this work, several normal, oil-in-water (o/w) microemulsions (MEs) were prepared using peppermint essential oil, jojoba oil, trans-anethole, and vitamin E as oil phases to test their capacity to load paclitaxel (PTX). Initially, pseudo-ternary partial phase diagrams were constructed in order to find the normal microemulsion region using d-α-tocopherol polyethylene glycol 1000 succinate (TPGS-1000) as surfactant and isobutanol (iso-BuOH) as co-surfactant. Selected ME formulations were loaded with PTX reaching concentrations of 0.6 mg mL-1 for the peppermint oil and trans-anethole MEs, while for the vitamin E and jojoba oil MEs, the maximum concentration was 0.3 mg mL-1. The PTX-loaded MEs were stable according to the results of heating-cooling cycles and mechanical force (centrifugation) test. Particularly, drug release profile for the PTX-loaded peppermint oil ME (MEPP) showed that ∼ 90% of drug was released in the first 48 h. Also, MEPP formulation showed 70% and 90% viability reduction on human cervical cancer (HeLa) cells after 24 and 48 h of exposure, respectively. In addition, HeLa cell apoptosis was confirmed by measuring caspase activity and DNA fragmentation. Results showed that the MEPP sample presented a major pro-apoptotic capability by comparing with the unloaded PTX ME sample.


Subject(s)
Antineoplastic Agents, Phytogenic/chemical synthesis , Apoptosis/drug effects , Cytotoxins/chemical synthesis , Nanospheres/chemistry , Paclitaxel/chemical synthesis , Plant Oils/chemical synthesis , Antineoplastic Agents, Phytogenic/pharmacokinetics , Apoptosis/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cytotoxins/pharmacokinetics , Dose-Response Relationship, Drug , Drug Liberation , HeLa Cells , Humans , Mentha piperita , Paclitaxel/pharmacokinetics , Plant Oils/pharmacokinetics , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/pharmacokinetics , Surface-Active Agents/chemical synthesis , Surface-Active Agents/pharmacokinetics , Vitamin E/chemical synthesis , Vitamin E/pharmacokinetics
3.
Int J Pharm ; 558: 72-81, 2019 Mar 10.
Article in English | MEDLINE | ID: mdl-30639217

ABSTRACT

Catheter-associated infections still represent a challenging thread because of the likelihood of biofilm formation. The aim of this work was the surface modification of catheters to immobilize lysozyme and acylase under mild conditions while preserving antimicrobial and anti-quorum sensing performances. Glycidyl methacrylate (GMA) was grafted onto poly(vinyl chloride) (PVC) catheters by a pre-irradiation method. The effects of monomer concentration, pre-irradiation dose, reaction time, monomer concentration and reaction temperature were investigated. The grafting process was monitored using FTIR-ATR spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and swelling data. Lysozyme was directly immobilized onto PVC-g-GMA maintaining the hydrolytic activity, which hindered Staphylococcus aureus adhesion. For acylase immobilization, the PVC-g-GMA catheters were reacted with ethylenediamine and glutaraldehyde in order to facilitate acylase covalent binding. Free acylase in solution demonstrated notably capability to act as quorum sensing inhibitor, as observed using Chromobacterium violaceum as biosensor, by degrading a wide variety of acylated homoserine lactones (AHLs), including those produced by Pseudomonas aeruginosa and Acinetobacter baumannii. Acylase-immobilized PVC-g-GMA catheters were challenged against degradation of AHLs and the activity monitored using both the biosensor and HPLC-MS. Relevantly, the functionalized catheters completely degraded all tested AHL signals, opening new ways of preventing biofilm formation on medical devices.


Subject(s)
Amidohydrolases/chemistry , Enzymes, Immobilized/chemistry , Epoxy Compounds/chemistry , Methacrylates/chemistry , Muramidase/chemistry , Polyvinyl Chloride/chemistry , Amidohydrolases/administration & dosage , Bacterial Adhesion/drug effects , Catheters , Enzymes, Immobilized/administration & dosage , Lactones/chemistry , Muramidase/administration & dosage , Quorum Sensing , Staphylococcus aureus/drug effects , Staphylococcus aureus/physiology
4.
Carbohydr Polym ; 205: 203-210, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30446096

ABSTRACT

Medical cotton gauzes were modified by grafting poly(methacrylic acid) (PMAA) via free radical polymerization to obtain wound dressings with antimicrobial and drug delivery properties. The effect of several reaction parameters including monomer and initiator concentrations, reaction time, and temperature was studied. The grafting was confirmed by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), swelling studies, and scanning electron microscopy (SEM). The grafted cotton gauzes (gauze-g-PMAA) samples were loaded with ZnO nanoparticles to endow with antibacterial properties. Also, they were tested as drug eluting systems using nalidixic acid as antimicrobial agent. The antibacterial activity of the ZnO-loaded gauze-g-PMAA samples was evaluated against Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis). The PMAA-grafted gauzes showed antibacterial activity and inhibited the growth of both microorganisms. These results suggest that the PMAA-grafted cotton gauzes could be used in the biomedical area particularly as antimicrobial and drug-eluting wound dressings.


Subject(s)
Anti-Bacterial Agents/chemistry , Bandages , Cellulose/chemistry , Cotton Fiber , Drug Delivery Systems , Polymethacrylic Acids/chemistry , Cellulose/chemical synthesis , Drug Liberation , Escherichia coli/drug effects , Nalidixic Acid/chemistry , Nalidixic Acid/pharmacology , Nanoparticles/chemistry , Polymerization , Polymethacrylic Acids/chemical synthesis , Staphylococcus epidermidis/drug effects , Zinc Oxide/chemistry , Zinc Oxide/pharmacology
5.
Carbohydr Polym ; 201: 490-499, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30241846

ABSTRACT

A hybrid hydrogel (GHC-SBA15) based on spruce xylan (HC), 2-hydroxyethyl methacrylate (HEMA), and mesoporous silica (SBA15) was prepared with the intended use of fibroblast attachment and growth. Xylan was functionalized with acryloyl chloride to introduce vinyl groups and was crosslinked by radical polymerization with HEMA in presence of SBA15. Infrared spectroscopy and nuclear magnetic resonance confirmed the copolymerization of HEMA with xylan. Up to 20 wt.% addition, SBA15 was homogenously incorporated in the structured hydrogel network as observed by SEM. Moreover, nitrogen adsorption-desorption, small angle X-ray scattering and transmission electron microscopy indicated that the mesoporous SBA15 framework was maintained and that the hybrid hydrogel was a physical mixture of SBA15 with the copolymer HC/HEMA. Rheological analysis revealed that addition of 20% w/w SBA15 into hydrogel enhanced significantly the mechanical properties. In addition, we demonstrate that fibroblast L929 cells grew and spread on GHC-SBA15. Cell viability was within the expected range.


Subject(s)
Cell Proliferation , Fibroblasts/metabolism , Hydrogels/chemistry , Methacrylates/chemistry , Picea/chemistry , Silicon Dioxide/chemistry , Tissue Scaffolds/chemistry , Xylans/chemistry , Animals , Cell Adhesion , Fibroblasts/cytology , Mice
6.
Curr Top Med Chem ; 18(4): 256-274, 2018.
Article in English | MEDLINE | ID: mdl-29637860

ABSTRACT

Safety and biocompatibility assessment of biomaterials are themes of constant concern as advanced materials enter the market as well as products manufactured by new techniques emerge. Within this context, this review provides an up-to-date approach on current methods for the characterization and safety assessment of biomaterials and biomedical devices from a physical-chemical to a biological perspective, including a description of the alternative methods in accordance with current and established international standards.


Subject(s)
Biocompatible Materials/adverse effects , Biocompatible Materials/standards , Materials Testing/standards , Biomedical Research/standards , Humans
7.
Toxicol In Vitro ; 37: 134-141, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27666655

ABSTRACT

Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations.


Subject(s)
Anti-Bacterial Agents/toxicity , Metal Nanoparticles/toxicity , Zinc Oxide/toxicity , Anti-Bacterial Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Cells, Cultured , Cytokines/metabolism , Dimethyl Sulfoxide/chemistry , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Metal Nanoparticles/chemistry , Propylamines/chemistry , Silanes/chemistry , Surface Properties , Zinc Oxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...