Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690733

ABSTRACT

BACKGROUNDPatients hospitalized for COVID-19 exhibit diverse clinical outcomes, with outcomes for some individuals diverging over time even though their initial disease severity appears similar to that of other patients. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity.METHODSWe performed deep immunophenotyping and conducted longitudinal multiomics modeling, integrating 10 assays for 1,152 Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study participants and identifying several immune cascades that were significant drivers of differential clinical outcomes.RESULTSIncreasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, formation of neutrophil extracellular traps, and T cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma Igs and B cells and dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to failure of viral clearance in patients with fatal illness.CONCLUSIONOur longitudinal multiomics profiling study revealed temporal coordination across diverse omics that potentially explain the disease progression, providing insights that can inform the targeted development of therapies for patients hospitalized with COVID-19, especially those who are critically ill.TRIAL REGISTRATIONClinicalTrials.gov NCT04378777.FUNDINGNIH (5R01AI135803-03, 5U19AI118608-04, 5U19AI128910-04, 4U19AI090023-11, 4U19AI118610-06, R01AI145835-01A1S1, 5U19AI062629-17, 5U19AI057229-17, 5U19AI125357-05, 5U19AI128913-03, 3U19AI077439-13, 5U54AI142766-03, 5R01AI104870-07, 3U19AI089992-09, 3U19AI128913-03, and 5T32DA018926-18); NIAID, NIH (3U19AI1289130, U19AI128913-04S1, and R01AI122220); and National Science Foundation (DMS2310836).


Subject(s)
COVID-19 , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/mortality , COVID-19/blood , Male , Longitudinal Studies , SARS-CoV-2/immunology , Female , Middle Aged , Aged , Adult , Cytokines/blood , Cytokines/immunology , Multiomics
2.
Clin Neuropsychol ; : 1-21, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567869

ABSTRACT

Objective: The purpose of this article is to provide a narrative review synthesizing the literature on differences between women and men in relationships among certain stressors associated with immune system activation and their relationship to cognitive dysfunction and dementia. Method: We review the cycle of stress leading to neuroinflammation via cortisol and neurochemical alterations, cell-mediated immune system activation, and pro-inflammatory cytokines, and how this is implicated in the development of dementia. We follow this by discussing sex differences in stress physiology and immune function. We then review the work on early life adversity (ELA) and adverse childhood experiences (ACEs), post-traumatic stress disorder, acute medical stressors, and their associations with cognitive dysfunction and dementia. Throughout, we emphasize women's presentations and issues unique to women (e.g. trauma disorder prevalence). Conclusions: There is a need for more mechanistic and longitudinal studies that consider trauma accumulation, both physical and emotional, as well as a greater focus on traumas more likely to occur in women (e.g. sexual abuse), and their relationship to early cognitive decline and dementia.

3.
Alcohol ; 118: 9-16, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582261

ABSTRACT

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.

4.
bioRxiv ; 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38496443

ABSTRACT

Mimicry of host protein structures ("molecular mimicry") is a common mechanism employed by viruses to evade the host's immune system. To date, studies have primarily evaluated molecular mimicry in the context of full protein structural mimics. However, recent work has demonstrated that short linear amino acid (AA) molecular mimics can elicit cross-reactive antibodies and T-cells from the host, which may contribute to development and progression of autoimmunity. Despite this, the prevalence of molecular mimics throughout the human virome has not been fully explored. In this study, we evaluate 134 human infecting viruses and find significant usage of linear mimicry across the virome, particularly those in the herpesviridae and poxviridae families. Furthermore, we identify that proteins involved in cellular replication and inflammation, those expressed from autosomes, the X chromosome, and in thymic cells are over-enriched in viral mimicry. Finally, we demonstrate that short linear mimicry from Epstein-Barr virus (EBV) is significantly higher in auto-antibodies found in multiple sclerosis patients to a greater degree than previously appreciated. Our results demonstrate that human-infecting viruses frequently leverage mimicry in the course of their infection, point to substantial evolutionary pressure for mimicry, and highlight mimicry's important role in human autoimmunity. Clinically, our findings could translate to development of novel therapeutic strategies that target viral infections linked to autoimmunity, with the goal of eliminating disease-associated latent viruses and preventing their reactivation.

5.
Nat Commun ; 15(1): 216, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38172101

ABSTRACT

Post-acute sequelae of SARS-CoV-2 (PASC) is a significant public health concern. We describe Patient Reported Outcomes (PROs) on 590 participants prospectively assessed from hospital admission for COVID-19 through one year after discharge. Modeling identified 4 PRO clusters based on reported deficits (minimal, physical, mental/cognitive, and multidomain), supporting heterogenous clinical presentations in PASC, with sub-phenotypes associated with female sex and distinctive comorbidities. During the acute phase of disease, a higher respiratory SARS-CoV-2 viral burden and lower Receptor Binding Domain and Spike antibody titers were associated with both the physical predominant and the multidomain deficit clusters. A lower frequency of circulating B lymphocytes by mass cytometry (CyTOF) was observed in the multidomain deficit cluster. Circulating fibroblast growth factor 21 (FGF21) was significantly elevated in the mental/cognitive predominant and the multidomain clusters. Future efforts to link PASC to acute anti-viral host responses may help to better target treatment and prevention of PASC.


Subject(s)
Body Fluids , COVID-19 , Female , Humans , SARS-CoV-2 , COVID-19/complications , B-Lymphocytes , Disease Progression , Phenotype
6.
medRxiv ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38076907

ABSTRACT

COVID-19 has resulted in over 645 million hospitalization and 7 million deaths globally. However, many questions still remain about clinical complications in COVID-19 and if these complications changed with different circulating SARS-CoV-2 strains. We analyzed a 2.5-year retrospective cohort of 47,063 encounters for 21,312 acute care patients at five Central Texas hospitals and define distinct trajectory groups (TGs) with latent class mixed modeling, based on the World Health Organization COVID-19 Ordinal Scale. Using this TG framework, we evaluated the association of demographics, diagnoses, vitals, labs, imaging, consultations, and medications with COVID-19 severity and broad clinical outcomes. Patients within 6 distinct TGs differed in manifestations of multi-organ disease and multiple clinical factors. The proportion of mild patients increased over time, particularly during Omicron waves. Age separated mild and fatal patients, though did not distinguish patients with severe versus critical disease. Male and Hispanic/Latino demographics were associated with more severe/critical TGs. More severe patients had a higher rate of neuropsychiatric diagnoses, consultations, and brain imaging, which did not change significantly in severe patients across SARS-CoV-2 variant waves. More severely affected patients also demonstrated an immunological signature of high neutrophils and immature granulocytes, and low lymphocytes and monocytes. Interestingly, low albumin was one of the best lab predictors of COVID-19 severity in association with higher malnutrition in severe/critical patients, raising concern of nutritional insufficiency influencing COVID-19 outcomes. Despite this, only a small fraction of severe/critical patients had nutritional labs checked (pre-albumin, thiamine, Vitamin D, B vitamins) or received targeted interventions to address nutritional deficiencies such as vitamin replacement. Our findings underscore the significant link between COVID-19 severity, neuropsychiatric complications, and nutritional insufficiency as key risk factors of COVID-19 outcomes and raise the question of the need for more widespread early assessment of patients' neurological, psychiatric, and nutritional status in acute care settings to help identify those at risk of severe disease outcomes.

7.
Sci Rep ; 13(1): 21971, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081885

ABSTRACT

Post-acute sequelae SARS-CoV-2 (PASC), also known as Long COVID, is a complex and widely recognized illness with estimates ranging from 5 to 30% of all COVID-19 cases. We performed a retrospective chart review of patients who presented to a dedicated Post-COVID-19 clinic between June 2021 and May 2022. The median patient age was 44.5 years, 63.5% patients were female, and patients presented at a median of 10.4 months from acute COVD-19 infection. 78% self-identified their race as white, and 21% identified as Latino ethnicity. During the acute COVID-19 infection, 50% of patients experienced moderate disease severity and 10.5% were hospitalized. The top three co-morbid conditions prior to SARS-CoV-2 infection included mental health conditions, hypertension and asthma. Patients reported a median of 18 new symptoms following COVID-19 illness, the most common were fatigue (89%), forgetfulness or "brain fog" (89%), and difficulty concentrating (77%). MoCA (Montreal Cognitive Assessment) assessment demonstrated that 46% had mild cognitive dysfunction. PHQ-9 (Patient Health Questionnaire) testing revealed 42% had moderate to severe depression, and 38% had moderate to severe anxiety on the GAD-7 (Generalized Anxiety Disorder) assessment. Symptom burden was similar across gender, age, and initial disease severity. PASC patients presenting to an academic Post-COVID-19 clinic experienced numerous multisystem symptoms and functional impairment, independent of the initial COVID-19 disease severity.


Subject(s)
COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Female , Adult , Male , COVID-19/epidemiology , Retrospective Studies , Texas/epidemiology , SARS-CoV-2 , Disease Progression
8.
medRxiv ; 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38106077

ABSTRACT

Background: Understanding the kinetics and longevity of antibody responses to SARS-CoV-2 is critical to informing strategies toward reducing Coronavirus disease 2019 (COVID-19) reinfections, and improving vaccination and therapy approaches. Methods: We evaluated antibody titers against SARS-CoV-2 nucleocapsid (N), spike (S), and receptor binding domain (RBD) of spike in 98 convalescent participants who experienced asymptomatic, mild, moderate or severe COVID-19 disease and in 17 non-vaccinated, non-infected controls, using four different antibody assays. Participants were sampled longitudinally at 1, 3, 6, and 12 months post-SARS-CoV-2 positive PCR test. Findings: Increasing acute COVID-19 disease severity correlated with higher anti-N and anti-RBD antibody titers throughout 12 months post-infection. Anti-N and anti-RBD titers declined over time in all participants, with the exception of increased anti-RBD titers post-vaccination, and the decay rates were faster in hospitalized compared to non-hospitalized participants. <50% of participants retained anti-N titers above control levels at 12 months, with non-hospitalized participants falling below control levels sooner. Nearly all hospitalized and non-hospitalized participants maintained anti-RBD titers above controls for up to 12 months, suggesting longevity of protection against severe reinfections. Nonetheless, by 6 months, few participants retained >50% of their 1-month anti-N or anti-RBD titers. Vaccine-induced increases in anti-RBD titers were greater in non-hospitalized relative to hospitalized participants. Early convalescent antibody titers correlated with age, but no association was observed between Post-Acute Sequelae of SARS-CoV-2 infection (PASC) status or acute steroid treatment and convalescent antibody titers. Interpretation: Hospitalized participants developed higher anti-SARS-CoV-2 antibody titers relative to non-hospitalized participants, a difference that persisted throughout 12 months, despite the faster decline in titers in hospitalized participants. In both groups, while anti-N titers fell below control levels for at least half of the participants, anti-RBD titers remained above control levels for almost all participants over 12 months, demonstrating generation of long-lived antibody responses known to correlate with protection from severe disease across COVID-19 severities. Overall, our findings contribute to the evolving understanding of COVID-19 antibody dynamics. Funding: Austin Public Health, NIAAA, Babson Diagnostics, Dell Medical School Startup.

9.
bioRxiv ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37986828

ABSTRACT

Hospitalized COVID-19 patients exhibit diverse clinical outcomes, with some individuals diverging over time even though their initial disease severity appears similar. A systematic evaluation of molecular and cellular profiles over the full disease course can link immune programs and their coordination with progression heterogeneity. In this study, we carried out deep immunophenotyping and conducted longitudinal multi-omics modeling integrating ten distinct assays on a total of 1,152 IMPACC participants and identified several immune cascades that were significant drivers of differential clinical outcomes. Increasing disease severity was driven by a temporal pattern that began with the early upregulation of immunosuppressive metabolites and then elevated levels of inflammatory cytokines, signatures of coagulation, NETosis, and T-cell functional dysregulation. A second immune cascade, predictive of 28-day mortality among critically ill patients, was characterized by reduced total plasma immunoglobulins and B cells, as well as dysregulated IFN responsiveness. We demonstrated that the balance disruption between IFN-stimulated genes and IFN inhibitors is a crucial biomarker of COVID-19 mortality, potentially contributing to the failure of viral clearance in patients with fatal illness. Our longitudinal multi-omics profiling study revealed novel temporal coordination across diverse omics that potentially explain disease progression, providing insights that inform the targeted development of therapies for hospitalized COVID-19 patients, especially those critically ill.

11.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790537

ABSTRACT

Oligodendrocytes are a key cell type within the central nervous system (CNS) that generate the myelin sheath covering axons, enabling fast propagation of neuronal signals. Alcohol consumption is known to affect oligodendrocytes and white matter in the CNS. However, most studies have focused on fetal alcohol spectrum disorder and severe alcohol use disorder. Additionally, the impact of alcohol dosage on oligodendrocytes has not been previously investigated. In this study, we evaluated transcriptomic changes in C57BL6/J cultured mature oligodendrocytes following exposure to moderate and high concentrations of alcohol. We found that high concentrations of alcohol elicited gene expression changes across a wide range of biological pathways, including myelination, protein translation, integrin signaling, cell cycle regulation, and inflammation. Further, our results demonstrate that transcriptomic changes are indeed dependent on alcohol concentration, with moderate and high concentrations of alcohol provoking distinct gene expression profiles. In conclusion, our study demonstrates that alcohol-induced transcriptomic changes in oligodendrocytes are concentration-dependent and may have critical downstream impacts on myelin production. Targeting alcohol-induced changes in cell cycle regulation, integrin signaling, inflammation, or protein translation regulation may uncover mechanisms for modulating myelin production or inhibition. Furthermore, gaining a deeper understanding of alcohol's effects on oligodendrocyte demyelination and remyelination could help uncover therapeutic pathways that can be utilized independent of alcohol to aid in remyelinating drug design.

12.
Phys Med Rehabil Clin N Am ; 34(3): 623-642, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37419536

ABSTRACT

The COVID-19 pandemic has resulted in a significant number of people developing long-term health effects of postacute sequelae SARS-CoV-2 infection (PASC). Both acute COVID-19 and PASC are now recognized as multiorgan diseases with multiple symptoms and disease causes. The development of immune dysregulation during acute COVID-19 and PASC is of high epidemiologic concern. Both conditions may also be influenced by comorbid conditions such as pulmonary dysfunction, cardiovascular disease, neuropsychiatric conditions, prior autoimmune conditions and cancer. This review discusses the clinical symptoms, pathophysiology, and risk factors that affect both acute COVID-19 and PASC.


Subject(s)
COVID-19 , Humans , Pandemics , SARS-CoV-2 , Risk Factors
13.
Virol J ; 20(1): 124, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328773

ABSTRACT

SARS-CoV-2 infection leading to Coronavirus Disease 2019 (COVID-19) has caused more than 762 million infections worldwide, with 10-30% of patients suffering from post-acute sequelae of SARS-CoV-2 infections (PASC). Initially thought to primarily affect the respiratory system, it is now known that SARS-CoV-2 infection and PASC can cause dysfunction in multiple organs, both during the acute and chronic stages of infection. There are also multiple risk factors that may predispose patients to worse outcomes from acute SARS-CoV-2 infection and contribute to PASC, including genetics, sex differences, age, reactivation of chronic viruses such as Epstein Barr Virus (EBV), gut microbiome dysbiosis, and behavioral and lifestyle factors, including patients' diet, alcohol use, smoking, exercise, and sleep patterns. In addition, there are important social determinants of health, such as race and ethnicity, barriers to health equity, differential cultural perspectives and biases that influence patients' access to health services and disease outcomes from acute COVID-19 and PASC. Here, we review risk factors in acute SARS-CoV-2 infection and PASC and highlight social determinants of health and their impact on patients affected with acute and chronic sequelae of COVID-19.


Subject(s)
COVID-19 , Epstein-Barr Virus Infections , Humans , Female , Male , Post-Acute COVID-19 Syndrome , Social Determinants of Health , COVID-19/complications , Herpesvirus 4, Human , SARS-CoV-2 , Risk Factors , Disease Progression
14.
AMIA Jt Summits Transl Sci Proc ; 2023: 477-486, 2023.
Article in English | MEDLINE | ID: mdl-37350891

ABSTRACT

This paper applies eXplainable Artificial Intelligence (XAI) methods to investigate the socioeconomic disparities in COVID-19 patient mortality. An Extreme Gradient Boosting (XGBoost) prediction model is built based on a de-identified Austin area hospital dataset to predict the mortality of COVID-19 patients. We apply two XAI methods, Shapley Additive exPlanations (SHAP) and Locally Interpretable Model Agnostic Explanations (LIME), to compare the global and local interpretation of feature importance. This paper demonstrates the advantages of using XAI which shows the feature importance and decisive capability. Furthermore, we use the XAI methods to cross-validate their interpretations for individual patients. The XAI models reveal that Medicare financial class, older age, and gender have high impact on the mortality prediction. We find that LIME's local interpretation does not show significant differences in feature importance comparing to SHAP, which suggests pattern confirmation. This paper demonstrates the importance of XAI methods in cross-validation of feature attributions.

16.
Front Mol Neurosci ; 15: 1019877, 2022.
Article in English | MEDLINE | ID: mdl-36407764

ABSTRACT

Since the first model of experimental autoimmune encephalomyelitis (EAE) was introduced almost a century ago, there has been an ongoing scientific debate about the risks and benefits of using EAE as a model of multiple sclerosis (MS). While there are notable limitations of translating EAE studies directly to human patients, EAE continues to be the most widely used model of MS, and EAE studies have contributed to multiple key breakthroughs in our understanding of MS pathogenesis and discovery of MS therapeutics. In addition, insights from EAE have led to a better understanding of modifiable environmental factors that can influence MS initiation and progression. In this review, we discuss how MS patient and EAE studies compare in our learning about the role of gut microbiome, diet, alcohol, probiotics, antibiotics, and fecal microbiome transplant in neuroinflammation. Ultimately, the combination of rigorous EAE animal studies, novel bioinformatic approaches, use of human cell lines, and implementation of well-powered, age- and sex-matched randomized controlled MS patient trials will be essential for improving MS patient outcomes and developing novel MS therapeutics to prevent and revert MS disease progression.

17.
Mult Scler Relat Disord ; 68: 104195, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223705

ABSTRACT

BACKGROUND AND OBJECTIVES: During the COVID-19 pandemic, B cell depleting therapies pose a clinical concern for patients with neuroimmune conditions, as patients may not mount a sufficient immune response to SARS-CoV-2 infection and vaccinations. Studies to-date have reported conflicting results on the degree of antibody production post-SARS-CoV-2 infection and vaccinations in B cell depleted patients, focusing primarily on short-term immune profiling. Our objective was to follow longitudinal immune responses in COVID-19 B cell depleted patients with neuroimmune disorders post-COVID-19 and SARS-CoV-2-vaccination. METHODS: CD20 B cell depleted autoimmune patients and age/sex-matched controls positive for SARS-CoV-2 were recruited at Dell Medical School, UT Austin between 2020 and 2021, followed prospectively for 12 months and evaluated at multiple time points for spike S1 receptor binding domain (RBD) antibody titers, B and T cell composition, and frequency of T cells specific for SARS-CoV-2 antigens. RESULTS: Immune responses post-SARS-CoV-2 infection and vaccination were evaluated in a cohort of COVID-19 B cell depleted neuroimmune patients (n = 5), COVID-19 non-B cell depleted autoimmune patients (n = 15), COVID-19 immunocompetent patients (n = 117), and healthy controls (n = 6) for a total of 259 samples in 137 participants. 4/5 B cell-depleted patients developed detectable anti-spike RBD antibodies, which were boosted by vaccination in 2 patients. While spike RBD antibodies were associated with presence of CD20+ B cells, very few B cells were required. In contrast, patients whose B cell compartment primarily consisted of CD19+CD20- Bcells during acute COVID-19 disease or vaccination did not seroconvert. Interestingly, circulating Bcells in B cell depleted patients were significantly CD38high with co-expression of CD24 and CD27, indicating that B cell depletion may impact B cell activation patterns. Additionally, all B cell depleted patients mounted a sustained T cell response to SARS-CoV-2 antigens, regardless of seroconversion. Specifically, all patients developed naïve, central memory, effector memory, and effector memory RA+ T cells, suggesting intact T cell memory conversion in B cell depleted patients compared to controls. DISCUSSION: We present the longest COVID-19 immune profiling analysis to date in B cell depleted patients, demonstrating that both humoral and cellular immune responses can be generated and sustained up to 12 months post SARS-CoV-2 infection and vaccination. Notably, failure to establish humoral immunity did not result in severe disease. We also highlight specific T and B cell signatures that could be used as clinical biomarkers to advise patients on timing of SARS-CoV-2 vaccinations.


Subject(s)
COVID-19 , Humans , Infant , SARS-CoV-2 , Pandemics , Autoimmunity , Patients , Vaccination , Antibodies, Viral
18.
EBioMedicine ; 83: 104208, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35952496

ABSTRACT

BACKGROUND: Better understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. METHODS: Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FINDINGS: The median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age ≥ 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63- 4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. INTERPRETATION: Integration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FUNDING: NIH.


Subject(s)
COVID-19 , COVID-19/complications , Creatinine , Female , Hospitalization , Humans , Male , Phenotype , Prospective Studies , RNA, Viral , SARS-CoV-2 , Severity of Illness Index , Troponin , Post-Acute COVID-19 Syndrome
19.
Gut Microbes ; 13(1): 1916278, 2021.
Article in English | MEDLINE | ID: mdl-34224314

ABSTRACT

Alcohol is well known for promoting systemic inflammation and aggravating multiple chronic health conditions. Thus, alcohol may also be expected to serve as a risk factor in autoimmune diseases. However, emerging data from human and animal studies suggest that alcohol may in fact be protective in autoimmune diseases. These studies point toward alcohol's complex dose-dependent relationship in autoimmune diseases as well as potential modulation by duration and type of alcohol consumption, cultural background and sex. In this review, we will explore alcohol's pro- and anti-inflammatory properties in human and animal autoimmune diseases, including autoimmune diabetes, thyroid disease, systemic lupus erythematosus, rheumatoid arthritis, experimental autoimmune encephalomyelitis and multiple sclerosis. We will also discuss potential mechanisms of alcohol's anti-inflammatory effects mediated by the gut microbiome.


Subject(s)
Diabetes Mellitus, Type 1/microbiology , Ethanol/metabolism , Gastrointestinal Microbiome , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Ethanol/adverse effects , Humans
20.
Article in English | MEDLINE | ID: mdl-34168058

ABSTRACT

OBJECTIVE: To determine whether distinct aquaporin-4 (AQP4)-IgG lineages play a role in neuromyelitis optica spectrum disorder (NMOSD) pathogenesis, we profiled the AQP4-IgG polyclonal serum repertoire and identified, quantified, and functionally characterized distinct AQP4-IgG lineages circulating in 2 patients with NMOSD. METHODS: We combined high-throughput sequencing and quantitative immunoproteomics to simultaneously determine the constituents of both the B-cell receptor (BCR) and the serologic (IgG) anti-AQP4 antibody repertoires in the peripheral blood of patients with NMOSD. The monoclonal antibodies identified by this platform were recombinantly expressed and functionally characterized in vitro. RESULTS: Multiple antibody lineages comprise serum AQP4-IgG repertoires. Their distribution, however, can be strikingly different in polarization (polyclonal vs pauciclonal). Among the 4 serum AQP4-IgG monoclonal antibodies we identified in 2 patients, 3 induced complement-dependent cytotoxicity in a model mammalian cell line (p < 0.01). CONCLUSIONS: The composition and polarization of AQP4-IgG antibody repertoires may play an important role in NMOSD pathogenesis and clinical presentation. Here, we present a means of coupling both cellular (BCR) and serologic (IgG) antibody repertoire analysis, which has not previously been performed in NMOSD. Our analysis could be applied in the future to clinical management of patients with NMOSD to monitor disease activity over time as well as applied to other autoimmune diseases to facilitate a deeper understanding of disease pathogenesis relative to autoantibody clones.


Subject(s)
Antibodies/blood , Aquaporin 4/blood , Neuromyelitis Optica/blood , Female , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neuromyelitis Optica/immunology , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...