Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(5): 2519-2528, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28169528

ABSTRACT

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.


Subject(s)
Climate Change , Ozone/chemistry , Air Pollution , Atmosphere/chemistry , Ecosystem , Humans
2.
Anal Chem ; 79(11): 4169-76, 2007 Jun 01.
Article in English | MEDLINE | ID: mdl-17455905

ABSTRACT

Chemiluminescence (CL) of acridinium esters (AE) has found widespread use in analytical chemistry. Using the mechanism of the reaction of H2O2 with 10-methyl-9-(p-formylphenyl)acridinium carboxylate trifluoromethanesulfonate and a modified flow injection system, the reaction rates of each step in the mechanism were evaluated and used in a kinetic model to optimize the analysis of H2O2. Operational parameters for a flow injection analysis system (reagent pH, flow rate, sample volume, PMT settings) were optimized using the kinetic model. The system is most sensitive to reaction pH due to competition between AE hydrolysis and CL. The optimized system was used to determine H2O2 concentrations in natural waters, including rain, freshwater, and seawater. The lower limit of detection varied in natural waters, from 352 pM in open ocean seawater (mean, 779 pM +/- 15.0%, RSD) to 58.1 nM in rain (mean, 6,340 nM +/- 0.92%, RSD). The analysis is specific for H2O2 and is therefore of potential interest for atmospheric chemistry applications where organoperoxides have been reported in the presence of H2O2.


Subject(s)
Acridines/chemistry , Esters/chemistry , Flow Injection Analysis/methods , Hydrogen Peroxide/analysis , Luminescent Measurements/methods , Models, Chemical , Water/analysis , Earth, Planet , Fresh Water , Hydrolysis , Kinetics , Molecular Structure , Rain , Seawater , Solutions
SELECTION OF CITATIONS
SEARCH DETAIL
...