Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
RSC Adv ; 14(28): 20398-20409, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38932983

ABSTRACT

Synthesis of new supramolecules with specific properties and realistic applications requires a sound knowledge of the structure-property relationships of the synthesized molecules. Non-covalent interaction like hydrogen bonding is conducive in realizing mesomorphism. The induction of the liquid crystalline character is associated with the strength of hydrogen bonds formed between the interacting components, which are affected by the change of polarity and polarizability of both components upon change in their terminal polar substituents. When the polar substituents are similar in their reactivity, how does the size of the polar substituent influence the mesomorphism? New hydrogen bonded liquid crystals are synthesized with fluorine and chlorine as substituents, and the mesomorphic behaviour is studied with the size of the substituent as a critical parameter. The chemical characterization is carried out by FTIR measurements, the phase characterization by polarizing optical microscopy and the thermal characterization by differential scanning calorimetry. The DFT method utilizing wb97x-D theory along with the cc-pVTZ basis set were used for the calculations. The hybrid functional B3LYP-D3 and Gaussian type basis set 6-31G(d,p) were used for studying the orientation of the molecules. It is observed that the ortho substituents reduce the co-planarity, meta substituents lead to the molecular broadening while para substituents exhibited highest mesomorphism by enhancing longitudinal dipole moment. Fluoro substituted compounds are exhibiting higher mesomorphism while the bulky chloro substituents are helping to better stack the molecules possessing longer chain lengths.

3.
Polymers (Basel) ; 16(2)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38257018

ABSTRACT

Resistive switching memories are among the emerging next-generation technologies that are possible candidates for in-memory and neuromorphic computing. In this report, resistive memory-switching behavior in solution-processed trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene-PVA-composite-based aryl acrylate on an ITO-coated PET device was studied. A sandwich configuration was selected, with silver (Ag) serving as a top contact and trans, trans-1,4-bis-(2-(2-naphthyl)-2-(butoxycarbonyl)-vinyl) benzene-PVA-composite-based aryl acrylate and ITO-PET serving as a bottom contact. The current-voltage (I-V) characteristics showed hysteresis behavior and non-zero crossing owing to voltages sweeping from positive to negative and vice versa. The results showed non-zero crossing in the devices' current-voltage (I-V) characteristics due to the nanobattery effect or resistance, capacitive, and inductive effects. The device also displayed a negative differential resistance (NDR) effect. Non-volatile storage was feasible with non-zero crossing due to the exhibition of resistive switching behavior. The sweeping range was -10 V to +10 V. These devices had two distinct states: 'ON' and 'OFF'. The ON/OFF ratios of the devices were 14 and 100 under stable operating conditions. The open-circuit voltages (Voc) and short-circuit currents (Isc) corresponding to memristor operation were explained. The DC endurance was stable. Ohmic conduction and direct tunneling mechanisms with traps explained the charge transport model governing the resistive switching behavior. This work gives insight into data storage in terms of a new conception of electronic devices based on facile and low-temperature processed material composites for emerging computational devices.

4.
Biophys Rev ; 14(2): 463-481, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35528030

ABSTRACT

Optical microscopy has emerged as a key driver of fundamental research since it provides the ability to probe into imperceptible structures in the biomedical world. For the detailed investigation of samples, a high-resolution image with enhanced contrast and minimal damage is preferred. To achieve this, an automated image analysis method is preferable over manual analysis in terms of both speed of acquisition and reduced error accumulation. In this regard, deep learning (DL)-based image processing can be highly beneficial. The review summarises and critiques the use of DL in image processing for the data collected using various optical microscopic techniques. In tandem with optical microscopy, DL has already found applications in various problems related to image classification and segmentation. It has also performed well in enhancing image resolution in smartphone-based microscopy, which in turn enablse crucial medical assistance in remote places.

5.
Chem Zvesti ; 76(8): 4907-4918, 2022.
Article in English | MEDLINE | ID: mdl-35492072

ABSTRACT

Sanitization of inanimate objects or body surfaces using disinfectant is essential for eliminating disease-causing pathogens and maintaining personal hygiene. With the advent of health emergencies, the importance and high demand for hand sanitizers (HS) are observed in everyday life. It is also important to know the constituent added to formulate HS, as the presence of harsh chemicals can cause skin irritation. In this study, different spectroscopic techniques were used to assess several commercially available HS along with the in-house prepared HS as per the WHO protocol. Fourier transform infrared spectroscopy and Raman spectroscopy identified the different HS chemical bonds and quantified the amount of alcohol and water in the HS. Varying amount of alcohols in HS, calibration profile was generated to identify its amount in commercial samples. Further, the commercial samples were also checked for contaminants whose presence in the HS might bring down its sanitization efficacy. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-022-02208-x.

6.
Anal Bioanal Chem ; 413(9): 2389-2406, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33586007

ABSTRACT

Smartphone-based imaging devices (SIDs) have shown to be versatile and have a wide range of biomedical applications. With the increasing demand for high-quality medical services, technological interventions such as portable devices that can be used in remote and resource-less conditions and have an impact on quantity and quality of care. Additionally, smartphone-based devices have shown their application in the field of teleimaging, food technology, education, etc. Depending on the application and imaging capability required, the optical arrangement of the SID varies which enables them to be used in multiple setups like bright-field, fluorescence, dark-field, and multiple arrays with certain changes in their optics and illumination. This comprehensive review discusses the numerous applications and development of SIDs towards histopathological examination, detection of bacteria and viruses, food technology, and routine diagnosis. Smartphone-based devices are complemented with deep learning methods to further increase the efficiency of the devices. Graphical Abstract.


Subject(s)
Biosensing Techniques/instrumentation , Smartphone/instrumentation , Animals , Biosensing Techniques/methods , Deep Learning , Humans , Immunoassay/instrumentation , Immunoassay/methods , Microscopy/instrumentation , Microscopy/methods , Optical Imaging/instrumentation , Optical Imaging/methods , Point-of-Care Systems
7.
Lasers Med Sci ; 35(6): 1431-1437, 2020 Aug.
Article in English | MEDLINE | ID: mdl-31900690

ABSTRACT

Since time immemorial, tuberculosis (TB) has intimidated the human race owing to its severity. Its socio-economic burden has led to it being a major cause of concern. It is one of the world's major causes of death from a single agent. Since most of the middle- and low-income countries are burdened with TB, sputum smear examination using conventional light microscopy is often the only resort for diagnosing TB. However, fluorescence microscopy is used as standard in most high-income countries, owing to its increased sensitivity. Light-emitting diodes (LEDs), being inexpensive, are increasingly gaining popularity as an alternative light source for fluorescence microscopy. It has been found to be highly efficient and has a lot of advantages over the conventional Ziehl-Neelsen-based bright field microscopy. In this review, we discuss about the usefulness of LED-based fluorescence microscopy in diagnosing TB and how it is superior to the other sources of light used.


Subject(s)
Microscopy, Fluorescence , Optics and Photonics , Tuberculosis, Pulmonary/diagnosis , Actin Cytoskeleton/metabolism , Coloring Agents , Humans , Tuberculosis, Pulmonary/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...