Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Stat ; 43(5): 1959-1985, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26997684

ABSTRACT

The problem of constructing Bayesian optimal discriminating designs for a class of regression models with respect to the T-optimality criterion introduced by Atkinson and Fedorov (1975a) is considered. It is demonstrated that the discretization of the integral with respect to the prior distribution leads to locally T-optimal discriminating design problems with a large number of model comparisons. Current methodology for the numerical construction of discrimination designs can only deal with a few comparisons, but the discretization of the Bayesian prior easily yields to discrimination design problems for more than 100 competing models. A new efficient method is developed to deal with problems of this type. It combines some features of the classical exchange type algorithm with the gradient methods. Convergence is proved and it is demonstrated that the new method can find Bayesian optimal discriminating designs in situations where all currently available procedures fail.

2.
J Theor Biol ; 234(4): 537-50, 2005 Jun 21.
Article in English | MEDLINE | ID: mdl-15808874

ABSTRACT

In this paper the problem of designing experiments for the Monod model, which is frequently used in microbiology, is studied. The model is defined implicitly by a differential equation and has numerous applications in microbial growth kinetics, environmental research, pharmacokinetics, and plant physiology. The designs presented so far in the literature are local optimal designs, which depend sensitively on a preliminary guess of the unknown parameters, and are for this reason in many cases not robust with respect to their misspecification. Uniform designs and maximin optimal designs are considered as a strategy to obtain robust and efficient designs for parameter estimation. In particular, standardized maximin D- and E-optimal designs are determined and compared with uniform designs, which are usually applied in these microbiological models. It is demonstrated that maximin optimal designs are substantially more efficient than uniform designs. Parameter variances can be decreased by a factor of two by simply sampling at optimal times during the experiment. Moreover, the maximin optimal designs usually provide the possibility for the experimenter to check the model assumptions, because they have more support points than parameters in the Monod model.


Subject(s)
Microbiology , Models, Statistical , Bacteria/growth & development , Biodegradation, Environmental , Research Design
SELECTION OF CITATIONS
SEARCH DETAIL
...