Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Anal Chem ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38315630

ABSTRACT

Top-down-mass spectrometry (MS)-based proteomics has emerged as a premier technology to examine proteins at the proteoform level, enabling characterization of genetic mutations, alternative splicing, and post-translational modifications. However, significant challenges that remain in top-down proteomics include the analysis of large proteoforms and the sensitivity required to examine proteoforms from minimal amounts of sample. To address these challenges, we have developed a new method termed "small-scale serial Size Exclusion Chromatography" (s3SEC), which incorporates a small-scale protein extraction (1 mg of tissue) and serial SEC without postfractionation sample handling, coupled with online high sensitivity capillary reversed-phase liquid chromatography tandem MS (RPLC-MS/MS) for analysis of large proteoforms. The s3SEC-RPLC-MS/MS method significantly enhanced the sensitivity and reduced the proteome complexity across the fractions, enabling the detection of high MW proteoforms previously undetected in one-dimensional (1D)-RPLC analysis. Importantly, we observed a drastic improvement in the signal intensity of high MW proteoforms in early fractions when using the s3SEC-RPLC method. Moreover, we demonstrate that this s3SEC-RPLC-MS/MS method also allows the analysis of lower MW proteoforms in subsequent fractions without significant alteration in proteoform abundance and equivalent or improved fragmentation efficiency to that of the 1D-RPLC approach. Although this study focuses on the use of cardiac tissue, the s3SEC-RPLC-MS/MS method could be broadly applicable to other systems with limited sample inputs.

2.
JCI Insight ; 9(1)2024 Jan 09.
Article in English | MEDLINE | ID: mdl-37988170

ABSTRACT

Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared with magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACS-purified hiPSC-CMs affects the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. Global proteomics revealed that lactate-purified hiPSC-CMs displayed a differential phenotype over MACS hiPSC-CMs. hiPSC-CMs were then integrated into 3D hiPSC-ECTs and cultured for 4 weeks. Structurally, there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force and Ca2+ transient measurements revealed similar functional performance between purification methods. High-resolution mass spectrometry-based quantitative proteomics showed no significant difference in protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates that lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable structural, functional, and proteomic features, and it suggests that lactate purification does not result in an irreversible change in a hiPSC-CM phenotype.


Subject(s)
Induced Pluripotent Stem Cells , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Induced Pluripotent Stem Cells/metabolism , Lactic Acid/metabolism , Tissue Engineering , Proteomics , Cells, Cultured
3.
Nat Commun ; 14(1): 8400, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110393

ABSTRACT

Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present challenges to study using conventional structural biology techniques. Here we develop a native nanoproteomics strategy for the enrichment and subsequent native top-down mass spectrometry (nTDMS) analysis of endogenous cardiac troponin (cTn) complex directly from human heart tissue. The cTn complex is enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complex, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the cTn complex, localizes Ca2+ binding domains, defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a paradigm for structural characterization of endogenous native protein complexes.


Subject(s)
Heart , Protein Processing, Post-Translational , Humans , Mass Spectrometry/methods , Actin Cytoskeleton , Troponin
4.
Anal Chem ; 95(35): 13091-13100, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37607050

ABSTRACT

Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modifications (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs, and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS method on a quadrupole time-of-flight MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Moreover, we applied our method to characterize PLN in disease and reported the significant reduction of PLN phosphorylation in human failing hearts with ischemic cardiomyopathy. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.


Subject(s)
Proteomics , Surface-Active Agents , Humans , Tandem Mass Spectrometry , Lipoproteins , Membrane Proteins
5.
bioRxiv ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37398031

ABSTRACT

Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes. Specifically, we demonstrate the first comprehensive characterization of the structure and dynamics of cardiac troponin (cTn) complexes directly from human heart tissue. The endogenous cTn complex is effectively enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complexes, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the heterotrimeric cTn complex, localizes Ca2+ binding domains (II-IV), defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a new paradigm for structural characterization of low-abundance native protein complexes.

6.
Res Sq ; 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37461709

ABSTRACT

Protein complexes are highly dynamic entities that display substantial diversity in their assembly, post-translational modifications, and non-covalent interactions, allowing them to play critical roles in various biological processes. The heterogeneity, dynamic nature, and low abundance of protein complexes in their native states present tremendous challenges to study using conventional structural biology techniques. Here we develop a "native nanoproteomics" strategy for the native enrichment and subsequent native top-down mass spectrometry (nTDMS) of low-abundance protein complexes. Specifically, we demonstrate the first comprehensive characterization of the structure and dynamics of cardiac troponin (cTn) complexes directly from human heart tissue. The endogenous cTn complex is effectively enriched and purified using peptide-functionalized superparamagnetic nanoparticles under non-denaturing conditions to enable the isotopic resolution of cTn complexes, revealing their complex structure and assembly. Moreover, nTDMS elucidates the stoichiometry and composition of the heterotrimeric cTn complex, localizes Ca2+ binding domains (II-IV), defines cTn-Ca2+ binding dynamics, and provides high-resolution mapping of the proteoform landscape. This native nanoproteomics strategy opens a new paradigm for structural characterization of low-abundance native protein complexes.

7.
Bioinformatics ; 39(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37294807

ABSTRACT

MOTIVATION: Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. RESULTS: We have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a "one-stop shop" for characterizing both native protein complexes and proteoforms. AVAILABILITY AND IMPLEMENTATION: The MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.


Subject(s)
Proteomics , Software , Databases, Factual , DNA-Binding Proteins , Mass Spectrometry , Proteomics/methods
8.
bioRxiv ; 2023 May 06.
Article in English | MEDLINE | ID: mdl-37205556

ABSTRACT

Three-dimensional engineered cardiac tissue (ECT) using purified human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) has emerged as an appealing model system for the study of human cardiac biology and disease. A recent study reported widely-used metabolic (lactate) purification of monolayer hiPSC-CM cultures results in an ischemic cardiomyopathy-like phenotype compared to magnetic antibody-based cell sorting (MACS) purification, complicating the interpretation of studies using lactate-purified hiPSC-CMs. Herein, our objective was to determine if use of lactate relative to MACs-purified hiPSC-CMs impacts the properties of resulting hiPSC-ECTs. Therefore, hiPSC-CMs were differentiated and purified using either lactate-based media or MACS. After purification, hiPSC-CMs were combined with hiPSC-cardiac fibroblasts to create 3D hiPSC-ECT constructs maintained in culture for four weeks. There were no structural differences observed, and there was no significant difference in sarcomere length between lactate and MACS hiPSC-ECTs. Assessment of isometric twitch force, Ca 2+ transients, and ß-adrenergic response revealed similar functional performance between purification methods. High-resolution mass spectrometry (MS)-based quantitative proteomics showed no significant difference in any protein pathway expression or myofilament proteoforms. Taken together, this study demonstrates lactate- and MACS-purified hiPSC-CMs generate ECTs with comparable molecular and functional properties, and suggests lactate purification does not result in an irreversible change in hiPSC-CM phenotype.

9.
Proc Natl Acad Sci U S A ; 120(19): e2222081120, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37126723

ABSTRACT

Single-cell proteomics has emerged as a powerful method to characterize cellular phenotypic heterogeneity and the cell-specific functional networks underlying biological processes. However, significant challenges remain in single-cell proteomics for the analysis of proteoforms arising from genetic mutations, alternative splicing, and post-translational modifications. Herein, we have developed a highly sensitive functionally integrated top-down proteomics method for the comprehensive analysis of proteoforms from single cells. We applied this method to single muscle fibers (SMFs) to resolve their heterogeneous functional and proteomic properties at the single-cell level. Notably, we have detected single-cell heterogeneity in large proteoforms (>200 kDa) from the SMFs. Using SMFs obtained from three functionally distinct muscles, we found fiber-to-fiber heterogeneity among the sarcomeric proteoforms which can be related to the functional heterogeneity. Importantly, we detected multiple isoforms of myosin heavy chain (~223 kDa), a motor protein that drives muscle contraction, with high reproducibility to enable the classification of individual fiber types. This study reveals single muscle cell heterogeneity in large proteoforms and establishes a direct relationship between sarcomeric proteoforms and muscle fiber types, highlighting the potential of top-down proteomics for uncovering the molecular underpinnings of cell-to-cell variation in complex systems.


Subject(s)
Protein Processing, Post-Translational , Proteomics , Proteomics/methods , Reproducibility of Results , Protein Isoforms/metabolism , Muscle Fibers, Skeletal/metabolism , Proteome/metabolism
10.
bioRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090578

ABSTRACT

Top-down mass spectrometry (MS)-based proteomics has become a powerful tool for analyzing intact proteins and their associated post-translational modification (PTMs). In particular, membrane proteins play critical roles in cellular functions and represent the largest class of drug targets. However, the top-down MS characterization of endogenous membrane proteins remains challenging, mainly due to their intrinsic hydrophobicity and low abundance. Phospholamban (PLN) is a regulatory membrane protein located in the sarcoplasmic reticulum and is essential for regulating cardiac muscle contraction. PLN has diverse combinatorial PTMs and their dynamic regulation has significant influence on cardiac contractility and disease. Herein, we have developed a rapid and robust top-down proteomics method enabled by a photocleavable anionic surfactant, Azo, for the extraction and comprehensive characterization of endogenous PLN from cardiac tissue. We employed a two-pronged top-down MS approach using an online reversed-phase liquid chromatography tandem MS (LC-MS/MS) method on a quadrupole time-of-flight (Q-TOF) MS and a direct infusion method via an ultrahigh-resolution Fourier-transform ion cyclotron resonance (FTICR) MS. We have comprehensively characterized the sequence and combinatorial PTMs of endogenous human cardiac PLN. We have shown the site-specific localization of phosphorylation to Ser16 and Thr17 by MS/MS for the first time and the localization of S-palmitoylation to Cys36. Taken together, we have developed a streamlined top-down targeted proteomics method for comprehensive characterization of combinatorial PTMs in PLN toward better understanding the role of PLN in cardiac contractility.

11.
J Proteome Res ; 22(3): 931-941, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36800490

ABSTRACT

Ischemic cardiomyopathy (ICM) is a prominent form of heart failure, but the molecular mechanisms underlying ICM remain relatively understudied due to marked phenotypic heterogeneity. Alterations in post-translational modifications (PTMs) and isoform switches in sarcomeric proteins play important roles in cardiac pathophysiology. Thus, it is essential to define sarcomeric proteoform landscape to better understand ICM. Herein, we have implemented a top-down liquid chromatography (LC)-mass spectrometry (MS)-based proteomics method for the identification and quantification of sarcomeric proteoforms in the myocardia of donors without heart diseases (n = 16) compared to end-stage ICM patients (n = 16). Importantly, quantification of post-translational modifications (PTMs) and expression reveal significant changes in various sarcomeric proteins extracted from ICM tissues. Changes include altered phosphorylation and expression of cardiac troponin I (cTnI) and enigma homologue 2 (ENH2) as well as an increase in muscle LIM protein (MLP) and calsarcin-1 (Cal-1) phosphorylation in ICM hearts. Our results imply that the contractile apparatus of the sarcomere is severely dysregulated during ICM. Thus, this is the first study to uncover significant molecular changes to multiple sarcomeric proteins in the LV myocardia of the end-stage ICM patients using liquid chromatography-mass spectrometry (LC-MS)-based top-down proteomics. Raw data are available via the PRIDE repository with identifier PXD038066.


Subject(s)
Cardiomyopathies , Sarcomeres , Humans , Sarcomeres/chemistry , Sarcomeres/metabolism , Proteomics/methods , Myocardium/metabolism , Protein Processing, Post-Translational , Protein Isoforms/metabolism , Cardiomyopathies/genetics
12.
bioRxiv ; 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36711733

ABSTRACT

Native top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. Herein, we have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a one-stop shop for characterizing both native protein complexes and proteoforms. The MASH Native app, video tutorials, written tutorials and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHNativeSoftware.php . All data files shown in user tutorials are included with the MASH Native software in the download .zip file.

13.
Methods Mol Biol ; 2500: 15-30, 2022.
Article in English | MEDLINE | ID: mdl-35657584

ABSTRACT

Top-down mass spectrometry (MS)-based analysis of larger proteoforms (>50 kDa) is typically challenging due to an exponential decay in the signal-to-noise ratio with increasing protein molecular weight (MW) and coelution with low-MW proteoforms. Size exclusion chromatography (SEC) fractionates proteins based on their size, separating larger proteoforms from those of smaller size in the proteome. In this protocol, we initially describe the use of SEC to fractionate high-MW proteoforms from low-MW proteoforms. Subsequently, the SEC fractions containing the proteoforms of interest are subjected to reverse-phase liquid chromatography (RPLC) coupled online with high-resolution MS. Finally, proteoforms are characterized using MASH Explorer, a user-friendly software environment for in-depth proteoform characterization.


Subject(s)
Proteomics , Tandem Mass Spectrometry , Chromatography, Gel , Chromatography, Reverse-Phase/methods , Proteome/analysis , Proteomics/methods
14.
Mol Omics ; 18(7): 627-634, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35762193

ABSTRACT

Dilated cardiomyopathy (DCM) is a major risk factor for developing heart failure and is often associated with an increased risk for life-threatening arrhythmia. Although numerous causal genes for DCM have been identified, RNA binding motif protein 20 (Rbm20) remains one of the few splicing factors that, when mutated or genetically ablated, leads to the development of DCM. In this study we sought to identify changes in the cardiac proteome in Rbm20 knockout (KO) rat hearts using global quantitative proteomics to gain insight into the molecular mechanisms precipitating the development of DCM in these rats. Our analysis identified changes in titin-interacting proteins involved in mechanical stretch-based signaling, as well as mitochondrial enzymes, which suggests that activation of pathological hypertrophy and altered mitochondrial metabolism and/or dysfunction, among other changes, contribute to the development of DCM in Rbm20 KO rats. Collectively, our findings provide the first report on changes in the cardiac proteome associated with genetic ablation of Rbm20.


Subject(s)
Cardiomyopathy, Dilated , Proteome , Animals , Cardiomyopathy, Dilated/complications , Cardiomyopathy, Dilated/genetics , Connectin/genetics , Connectin/metabolism , Proteome/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Rats
15.
Anal Chem ; 93(29): 10013-10021, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34258999

ABSTRACT

Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Antibodies, Monoclonal , Ion Mobility Spectrometry , Mass Spectrometry
16.
J Proteome Res ; 20(8): 4203-4211, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34236868

ABSTRACT

Global bottom-up mass spectrometry (MS)-based proteomics is widely used for protein identification and quantification to achieve a comprehensive understanding of the composition, structure, and function of the proteome. However, traditional sample preparation methods are time-consuming, typically including overnight tryptic digestion, extensive sample cleanup to remove MS-incompatible surfactants, and offline sample fractionation to reduce proteome complexity prior to online liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Thus, there is a need for a fast, robust, and reproducible method for protein identification and quantification from complex proteomes. Herein, we developed an ultrafast bottom-up proteomics method enabled by Azo, a photocleavable, MS-compatible surfactant that effectively solubilizes proteins and promotes rapid tryptic digestion, combined with the Bruker timsTOF Pro, which enables deeper proteome coverage through trapped ion mobility spectrometry (TIMS) and parallel accumulation-serial fragmentation (PASEF) of peptides. We applied this method to analyze the complex human cardiac proteome and identified nearly 4000 protein groups from as little as 1 mg of human heart tissue in a single one-dimensional LC-TIMS-MS/MS run with high reproducibility. Overall, we anticipate this ultrafast, robust, and reproducible bottom-up method empowered by both Azo and the timsTOF Pro will be generally applicable and greatly accelerate the throughput of large-scale quantitative proteomic studies. Raw data are available via the MassIVE repository with identifier MSV000087476.


Subject(s)
Heart , Proteomics , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Proteome , Reproducibility of Results
17.
J Am Chem Soc ; 143(31): 12014-12024, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34328324

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry, and the S protein glycosylation plays key roles in altering the viral binding/function and infectivity. However, the molecular structures and glycan heterogeneity of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis by conventional bottom-up glycoproteomic approaches. Here, we report the complete structural elucidation of intact O-glycan proteoforms through a hybrid native and denaturing top-down mass spectrometry (MS) approach employing both trapped ion mobility spectrometry (TIMS) quadrupole time-of-flight and ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR)-MS. Native top-down TIMS-MS/MS separates the protein conformers of the S-RBD to reveal their gas-phase structural heterogeneity, and top-down FTICR-MS/MS provides in-depth glycoform analysis for unambiguous identification of the glycan structures and their glycosites. A total of eight O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that this hybrid top-down MS approach can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants as well as other O-glycoproteins in general.


Subject(s)
Polysaccharides/analysis , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Carbohydrate Sequence , Polysaccharides/chemistry , Protein Domains , Tandem Mass Spectrometry/methods
18.
J Am Soc Mass Spectrom ; 32(6): 1278-1294, 2021 Jun 02.
Article in English | MEDLINE | ID: mdl-33983025

ABSTRACT

Top-down mass spectrometry (MS)-based proteomics is a powerful technology for comprehensively characterizing proteoforms to decipher post-translational modifications (PTMs) together with genetic variations and alternative splicing isoforms toward a proteome-wide understanding of protein functions. In the past decade, top-down proteomics has experienced rapid growth benefiting from groundbreaking technological advances, which have begun to reveal the potential of top-down proteomics for understanding basic biological functions, unraveling disease mechanisms, and discovering new biomarkers. However, many challenges remain to be comprehensively addressed. In this Account & Perspective, we discuss the major challenges currently facing the top-down proteomics field, particularly in protein solubility, proteome dynamic range, proteome complexity, data analysis, proteoform-function relationship, and analytical throughput for precision medicine. We specifically review the major technology developments addressing these challenges with an emphasis on our research group's efforts, including the development of top-down MS-compatible surfactants for protein solubilization, functionalized nanoparticles for the enrichment of low-abundance proteoforms, strategies for multidimensional chromatography separation of proteins, and a new comprehensive user-friendly software package for top-down proteomics. We have also made efforts to connect proteoforms with biological functions and provide our visions on what the future holds for top-down proteomics.


Subject(s)
Mass Spectrometry/methods , Proteins/chemistry , Proteome/analysis , Proteomics/methods , Humans , Mass Spectrometry/statistics & numerical data , Precision Medicine/methods , Protein Processing, Post-Translational , Proteins/metabolism , Proteome/metabolism , Software , Solubility
19.
bioRxiv ; 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33688648

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes an extensively glycosylated surface spike (S) protein to mediate host cell entry and the S protein glycosylation is strongly implicated in altering viral binding/function and infectivity. However, the structures and relative abundance of the new O-glycans found on the S protein regional-binding domain (S-RBD) remain cryptic because of the challenges in intact glycoform analysis. Here, we report the complete structural characterization of intact O-glycan proteoforms using native top-down mass spectrometry (MS). By combining trapped ion mobility spectrometry (TIMS), which can separate the protein conformers of S-RBD and analyze their gas phase structural variants, with ultrahigh-resolution Fourier transform ion cyclotron resonance (FTICR) MS analysis, the O-glycoforms of the S-RBD are comprehensively characterized, so that seven O-glycoforms and their relative molecular abundance are structurally elucidated for the first time. These findings demonstrate that native top-down MS can provide a high-resolution proteoform-resolved mapping of diverse O-glycoforms of the S glycoprotein, which lays a strong molecular foundation to uncover the functional roles of their O-glycans. This proteoform-resolved approach can be applied to reveal the structural O-glycoform heterogeneity of emergent SARS-CoV-2 S-RBD variants, as well as other O-glycoproteins in general.

20.
J Proteome Res ; 20(2): 1424-1433, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33395532

ABSTRACT

Three-dimensional (3D) human induced pluripotent stem cell-derived engineered cardiac tissues (hiPSC-ECTs) have emerged as a promising alternative to two-dimensional hiPSC-cardiomyocyte monolayer systems because hiPSC-ECTs are a closer representation of endogenous cardiac tissues and more faithfully reflect the relevant cardiac pathophysiology. The ability to perform functional and molecular assessments using the same hiPSC-ECT construct would allow for more reliable correlation between observed functional performance and underlying molecular events, and thus is critically needed. Herein, for the first time, we have established an integrated method that permits sequential assessment of functional properties and top-down proteomics from the same single hiPSC-ECT construct. We quantitatively determined the differences in isometric twitch force and the sarcomeric proteoforms between two groups of hiPSC-ECTs that differed in the duration of time of 3D-ECT culture. Importantly, by using this integrated method we discovered a new and strong correlation between the measured contractile parameters and the phosphorylation levels of alpha-tropomyosin between the two groups of hiPSC-ECTs. The integration of functional assessments together with molecular characterization by top-down proteomics in the same hiPSC-ECT construct enables a holistic analysis of hiPSC-ECTs to accelerate their applications in disease modeling, cardiotoxicity, and drug discovery. Data are available via ProteomeXchange with identifier PXD022814.


Subject(s)
Induced Pluripotent Stem Cells , Cardiotoxicity , Cell Differentiation , Humans , Myocytes, Cardiac , Proteomics , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...