Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Immunopathol Pharmacol ; 23(2): 481-9, 2010.
Article in English | MEDLINE | ID: mdl-20646343

ABSTRACT

Recent studies introduced the novel concept of chemical lipolysis where phosphatidylcholine (PC), an active component of commercial preparations, plays a pivotal role. Other studies suggested that sodium deoxycholate (DOC), an excipient contained in medical preparations, could be the real active component performing an adipocytolytic action. We investigated the effects of PC and DOC on human primary adipocyte cultures and on human fresh adipose tissue. Human adipocytes isolated by Rodbell's method, were cultured onto type I collagen-coated glass coverslips, placed into 24-well tissue culture plates. Cells were incubated with or without DOC (5-7-9%), PC (5%) or DOC/PC mixture and observed under phase contrast microscope. After incubation, cells were stained with Oil Red-O and with acridine orange/ethidium bromide to observe necrotic cells with phase contrast microscope and fluorescent microscope, respectively. Histological specimens from adipose tissue biopsies were observed with phase contrast microscopy and with scanning electron microscopy. To investigate the lipid pattern variability in the different experimental conditions, culture medium obtained from the different treatments was subjected to lipid extraction and subsequently to thin layer chromatography (TLC). Microscopic observation of adipocytes showed that DOC treatment led to a detrimental morphological effect in a dose-dependent manner. PC treatment did not significantly affect adipocyte viability. On the contrary, results from experiments aimed to analyze the effects of PC/DOC combined treatment suggested a PC protective role against the DOC harmful effects on adipocytes. Results indicated that clinical effects, observed in local treatment with pharmaceutical preparation, could be due only to DOC, a detergent inducing nonspecific lysis of cell membranes following adipocyte necrosis. On the other hand, PC could likely be incorporated in the lipid bilayer, thus strongly reducing the disruptive DOC effects.


Subject(s)
Adipocytes/drug effects , Adipose Tissue/drug effects , Deoxycholic Acid/pharmacology , Phosphatidylcholines/pharmacology , Adipocytes/cytology , Adipose Tissue/ultrastructure , Apoptosis/drug effects , Cell Survival/drug effects , Cells, Cultured , Humans
2.
Int J Immunopathol Pharmacol ; 23(1): 235-46, 2010.
Article in English | MEDLINE | ID: mdl-20378009

ABSTRACT

Gliomas are histologically graded by cellularity, cytological atypia, necrosis, mitotic figures, and vascular proliferation, features associated with biologically aggressive behaviour. However, abundant evidence suggests the presence of unrecognized, clinically relevant subclasses of the diffuse gliomas, both in respect to their underlying molecular phenotype and their clinical response to therapy. It is well-known that patient prognosis and therapeutic decisions rely on accurate pathological grading. Recently, it was reported that human gliomas accumulate lipid droplets during progression, suggesting a lipid metabolism impairment. Considering the crucial role of peroxisomes in lipid metabolism, in the present work we studied the expression profiles of proteins either exclusively localized to peroxisomes, such as peroxin14 (PEX14), peroxisomal membrane protein 70Kda (PMP70), acyl-CoA oxidase, thiolase, or partially associated to peroxisomes such as Hydroxymethylglutaryl-CoA reductase (HMGCoA-red) and peroxisomal-related proteins, namely PPARalpha, in human glioma specimens at different grades of malignancy. Moreover, Nile red staining of lipid droplets, thin layer chromatography (TLC) and proton nuclear magnetic resonance spectroscopy (NMR) were carried out in order to correlate the biochemical results with the lipid content of tumor tissues. The results obtained indicate that correlating the malignancy grade with the expression of peroxisomal genes and proteins, may constitute a sensitive tool to highlight possible subtypes not recognized by the classical histological techniques.


Subject(s)
Glioma/metabolism , Lipid Metabolism , Peroxisomes/chemistry , ATP-Binding Cassette Transporters/analysis , Acyl-CoA Oxidase/analysis , Blotting, Western , Glioma/chemistry , Humans , Immunohistochemistry , Magnetic Resonance Spectroscopy , Membrane Proteins/analysis , Polymerase Chain Reaction , Repressor Proteins/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...