Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 6(9): e04954, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32995631

ABSTRACT

The present work is conducted in the industrial district south of greater Cairo (ElTabbin area). Some heavy metals like Mn, Co, Ni, Cu, Zn, Pb, Cr, Ba, Cd, Mo were determined in polluted soils during May, 2018. At the study area, results displayed that average heavy metals concentrations differ considerably. They are decreased from Mn to Cd (Mn > Ba > Zn > Cr > Ni > Co > Pb > Cu > Mo > Cd). The average ranges as follows: Mn (255.8-31448.2 ppm); Ba (145.2-17545.6 ppm); Zn (53.3-1589.9 ppm); Cr (26.7-311.3 ppm); Ni (29.7-114.1 ppm); Co (13.2-39.8 ppm); Pb (5.7-77.4 ppm); Cu (7.6-35.2 ppm); Mo (0.1-15.9 ppm) and Cd (0-1.5 ppm), respectively. ElTabbin area has heavy manufacturing activity at Egypt. ElTabbin area was chosen as a model for that contamination. Electrical characteristics of some specimens from El- Tebbin area, Egypt, were taken and measured electrically at frequency range (10-3 to 100 kHz). Major and heavy elements were measured at specimens. Specimens were classified to three categories according to electrical properties. The changes were the consequence of change in minor and major mineral composition in the specimens. Electrical properties were able to recognize different specimens according to different levels of contaminants in the specimens. Texture, tortuosity and minor elements of heavy elements are the controlling factors that control electrical properties at specimens. High values concentration of Mn, Ni, and Zn heavy elements increases conductivity while the high concentration of Pb and Cu heavy elements decreases the conductivity. The mixing up of these different minor and major minerals and elements at specimen may lead to the change of conductivity values. The main controlling factors of the major elements are the Fe2O3 and SiO2, while the main controlling factors of the minor elements are the Mn and Pb. Our main objective is to study mixing up of the different minor and major minerals and elements on electrical properties of rocks.

2.
Environ Monit Assess ; 191(5): 267, 2019 Apr 06.
Article in English | MEDLINE | ID: mdl-30955117

ABSTRACT

This study focuses on the assessment of surface soils from industrially polluted region (El Tebbin) of southern Cairo, Egypt. The impact of agricultural, residential and industrial land use on soils developed from Nile river sediments has significantly compromised their function. Previous evidence has shown that the food chain is contaminated and enhances risk of contaminant exposure of the residential communities. This study investigates factors controlling potentially toxic element (PTE) distribution (Co, Ni, Pb, Cd, Zn, Cr and Cu) in El Tebbin soils and provide estimates of their mobility and bioavailability. The PTE concentrations are characterised by high variability as result of the variety of natural and anthropogenic influences. Highest spatial variability is found for Zn, Cd, Pb and Cu (C.V = 260.0%, 280.4%, 140.8% and 159.6% respectively) and enrichment factors indicate strong anthropogenic inputs. For Co and Ni, relatively low spatial variability (C.V = 65.8% and 45.0% respectively) with depletion in Ni suggests a relatively minor contribution from anthropogenic sources. For Cr, a more uniform distribution pattern showing depletion to minimal enrichment across the study area (C.V = 19.2%) reflects almost exclusive lithogenic control. Using principle component analysis (PCA) to explore concentration data reveals that the major inputs affecting PTE distribution are modified by primary soil properties (texture and pH). Their relative bioavailability (identified through sequential chemical extraction) relates strongly to local input sources. Those elements dominated by lithogenic input (Ni and Co) were found predominantly in soil residual fractions (95.6% and 90.5% respectively), while elements with stronger anthropogenic contributions (Cd, Zn, Pb and Cu) showed much higher portion in the more mobile and bioavailable fractions obtained from sequential chemical extraction, with average proportions of the totals being 62.6%, 57%, 40.7% and 39.2% respectively. Those PTEs with strong anthropogenic influence are potentially much more mobile for bioaccumulation in food chain with increased health risk for exposed residents and are confirmed by elevated concentrations of Cd, Zn, Pb and Cu recorded in local plant species. The main pollution sources were further highlighted by cluster analysis and showed vehicle traffic and specific industrial activities but which varied significantly from site to site. The identification of sources through the approach developed here allows prioritisation of monitoring and regulatory decisions by the local government to reduce further environmental exposure of the local population.


Subject(s)
Environmental Monitoring , Metals, Heavy/analysis , Soil Pollutants/analysis , Agriculture , Egypt , Environmental Pollution/analysis , Rivers/chemistry , Soil/chemistry
3.
Chemosphere ; 95: 63-74, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24053943

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) were extracted from 30 samples (24 soils and 6 stream sediments) collected in El-Tabbin area in the southern part of Greater Cairo, Egypt. Isopleth maps of PAHs clarified the regional variability and identified the most affected regions in the area suffering from high pollution. The total PAH concentrations were 53.4-5558.0 ng g(-1) in the sample extracts. The highest values were found in a soil sample near a coke factory, with the highest concentration of single PAHs, which were 1064.8 ng g(-1) of fluoranthene and 1286.4 ng g(-1) of phenanthrene. The calculated ratios and indexes allowed to elucidate origin of the organic compounds and to identify emission sources. The overall molecular patterns are signatures of pyrolysis of fossil fuels and biomass. Petrogenic contamination was recognised in the sediment samples due to petroleum products deliveries from ships. Also perylene was prominent especially in samples of the River Nile sediments as a diagenetic product of fungi. Other detailed information on petrogenic sources was provided by analysis of alkanes and calculation of alkane ratios.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Biomass , Egypt , Petroleum Pollution , Rivers/chemistry , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...