Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 9(1): e0077421, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34378952

ABSTRACT

The primary target organ of coronavirus disease 2019 (COVID-19) infection is the respiratory tract. Currently, there is limited information on the ability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect and regulate innate immunity in human immune cells and lung epithelial cells. Here, we compared the ability of four Finnish isolates of SARS-CoV-2 from COVID-19 patients to replicate and induce interferons (IFNs) and other cytokines in different human cells. All isolates failed to replicate in dendritic cells, macrophages, monocytes, and lymphocytes, and no induction of cytokine gene expression was seen. However, most of the isolates replicated in Calu-3 cells, and they readily induced type I and type III IFN gene expression. The hCoV-19/Finland/FIN-25/2020 isolate, originating from a traveler from Milan in March 2020, showed better ability to replicate and induce IFN and inflammatory responses in Calu-3 cells than other isolates of SARS-CoV-2. Our data increase the knowledge on the pathogenesis and antiviral mechanisms of SARS-CoV-2 infection in human cell systems. IMPORTANCE With the rapid spread of the coronavirus disease 2019 (COVID-19) pandemic, information on the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and regulation of innate immunity in human immune cells and lung epithelial cells is needed. In the present study, we show that SARS-CoV-2 failed to productively infect human immune cells, but different isolates of SARS-CoV-2 showed differential ability to replicate and regulate innate interferon responses in human lung epithelial Calu-3 cells. These findings will open up the way for further studies on the mechanisms of pathogenesis of SARS-CoV-2 in human cells.


Subject(s)
COVID-19/immunology , Epithelial Cells/immunology , Immunity, Innate , Lung/immunology , SARS-CoV-2/isolation & purification , Virus Replication/physiology , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Cytokines/genetics , Epithelial Cells/virology , Gene Expression , Humans , Interferon Type I/genetics , Interferons/genetics , Kinetics , Lung/virology , Phylogeny , RNA, Viral , SARS-CoV-2/classification , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Trypsin , Interferon Lambda
2.
J Infect Dis ; 224(2): 218-228, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33905505

ABSTRACT

BACKGROUND: Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. METHODS: We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), S1 and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. RESULTS: The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. S1 and RBD-based EIA results had a strong correlation with microneutralization test results. CONCLUSIONS: The data indicate a combination of SARS-CoV-2 S1 or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/immunology , Immunoglobulin A/blood , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Humans , Immunoenzyme Techniques , Immunoglobulin A/immunology , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Neutralization Tests , Phosphoproteins/immunology , SARS-CoV-2/immunology , Sensitivity and Specificity
3.
Front Immunol ; 12: 694105, 2021.
Article in English | MEDLINE | ID: mdl-35069519

ABSTRACT

Filovirus family consists of highly pathogenic viruses that have caused fatal outbreaks especially in many African countries. Previously, research focus has been on Ebola, Sudan and Marburg viruses leaving other filoviruses less well studied. Filoviruses, in general, pose a significant global threat since they are highly virulent and potentially transmissible between humans causing sporadic infections and local or widespread epidemics. Filoviruses have the ability to downregulate innate immunity, and especially viral protein 24 (VP24), VP35 and VP40 have variably been shown to interfere with interferon (IFN) gene expression and signaling. Here we systematically analyzed the ability of VP24 proteins of nine filovirus family members to interfere with retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated antigen 5 (MDA5) induced IFN-ß and IFN-λ1 promoter activation. All VP24 proteins were localized both in the cell cytoplasm and nucleus in variable amounts. VP24 proteins of Zaire and Sudan ebolaviruses, Lloviu, Taï Forest, Reston, Marburg and Bundibugyo viruses (EBOV, SUDV, LLOV, TAFV, RESTV, MARV and BDBV, respectively) were found to inhibit both RIG-I and MDA5 stimulated IFN-ß and IFN-λ1 promoter activation. The inhibition takes place downstream of interferon regulatory factor 3 phosphorylation suggesting the inhibition to occur in the nucleus. VP24 proteins of Mengla (MLAV) or Bombali viruses (BOMV) did not inhibit IFN-ß or IFN-λ1 promoter activation. Six ebolavirus VP24s and Lloviu VP24 bound tightly, whereas MARV and MLAV VP24s bound weakly, to importin α5, the subtype that regulates the nuclear import of STAT complexes. MARV and MLAV VP24 binding to importin α5 was very weak. Our data provides new information on the innate immune inhibitory mechanisms of filovirus VP24 proteins, which may contribute to the pathogenesis of filovirus infections.


Subject(s)
DEAD Box Protein 58/immunology , Filoviridae/immunology , Interferon Type I/immunology , Interferon-Induced Helicase, IFIH1/immunology , Interferons/immunology , Interleukins/immunology , Promoter Regions, Genetic/immunology , Receptors, Immunologic/immunology , Viral Proteins/immunology , Cell Line, Tumor , DEAD Box Protein 58/genetics , Filoviridae/genetics , Gene Expression Regulation/immunology , HEK293 Cells , Humans , Interferon Type I/genetics , Interferon-Induced Helicase, IFIH1/genetics , Interferons/genetics , Interleukins/genetics , Receptors, Immunologic/genetics , Viral Proteins/genetics
4.
J Transl Autoimmun ; 3: 100055, 2020.
Article in English | MEDLINE | ID: mdl-32743535

ABSTRACT

Narcolepsy type 1, likely an immune-mediated disease, is characterized by excessive daytime sleepiness and cataplexy. The disease is strongly associated with human leukocyte antigen (HLA) DQB1∗06:02. A significant increase in the incidence of childhood and adolescent narcolepsy was observed after a vaccination campaign with AS03-adjuvanted Pandemrix influenza vaccine in Nordic and several other countries in 2010 and 2011. Previously, it has been suggested that a surface-exposed region of influenza A nucleoprotein, a structural component of the Pandemrix vaccine, shares amino acid residues with the first extracellular domain of the human OX2 orexin/hypocretin receptor eliciting the development of autoantibodies. Here, we analyzed, whether H1N1pdm09 infection or Pandemrix vaccination contributed to the development of autoantibodies to the orexin precursor protein or the OX1 or OX2 receptors. The analysis was based on the presence or absence of autoantibody responses against analyzed proteins. Entire OX1 and OX2 receptors or just their extracellular N-termini were transiently expressed in HuH7 cells to determine specific antibody responses in human sera. Based on our immunofluorescence analysis, none of the 56 Pandemrix-vaccinated narcoleptic patients, 28 patients who suffered from a laboratory-confirmed H1N1pdm09 infection or 19 Pandemrix-vaccinated controls showed specific autoantibody responses to prepro-orexin, orexin receptors or the isolated extracellular N-termini of orexin receptors. We also did not find any evidence for cell-mediated immunity against the N-terminal epitopes of OX2. Our findings do not support the hypothesis that the surface-exposed region of the influenza nucleoprotein A would elicit the development of an immune response against orexin receptors.

5.
Sci Rep ; 9(1): 15710, 2019 10 31.
Article in English | MEDLINE | ID: mdl-31673117

ABSTRACT

Zika virus (ZIKV) infections in humans are considered to be mild or subclinical. However, during the recent epidemics in the Pacific Islands and the Americas, the infection was associated with Quillain-Barré syndrome and congenital infections with fetal brain abnormalities, including microcephaly. Thus, more detailed understanding of ZIKV-host cell interactions and regulation of innate immune responses by strains of differential evolutionary origin is required. Here, we characterized the infection and immune responses triggered by two epidemic Asian/American lineage viruses, including an isolate from fetal brains, and a historical, low passage 1947 African lineage virus in human monocyte-derived dendritic cells (DCs) and macrophages. The epidemic Asian/American ZIKV replicated well and induced relatively good antiviral responses in human DCs whereas the African strain replicated less efficiently and induced weaker immune responses. In macrophages both the African and Asian strains showed limited replication and relatively weak cytokine gene expression. Interestingly, in macrophages we observed host protein degradation, especially IRF3 and STAT2, at early phases of infection with both lineage viruses, suggesting an early proteasomal activation in phagocytic cells. Our data indicates that ZIKV evolution has led to significant phenotypic differences in the replication characteristics leading to differential regulation of host innate immune responses.


Subject(s)
Dendritic Cells/immunology , Immunity, Innate , Macrophages/immunology , Virus Replication , Zika Virus/physiology , Africa , Asia , Dendritic Cells/virology , Evolution, Molecular , Humans , Macrophages/virology , Species Specificity , Zika Virus/classification , Zika Virus/immunology
6.
Viruses ; 11(11)2019 11 04.
Article in English | MEDLINE | ID: mdl-31690057

ABSTRACT

The Zika virus (ZIKV) is a member of the Flaviviridae family and an important human pathogen. Most pathogenic viruses encode proteins that interfere with the activation of host innate immune responses. Like other flaviviruses, ZIKV interferes with the expression of interferon (IFN) genes and inhibits IFN-induced antiviral responses. ZIKV infects through epithelial barriers where IFN-λ1 is an important antiviral molecule. In this study, we analyzed the effects of ZIKV proteins on the activation of IFN-λ1 promoter. All ZIKV proteins were cloned and transiently expressed. ZIKV NS5, but no other ZIKV protein, was able to interfere with the RIG-I signaling pathway. This inhibition took place upstream of interferon regulatory factor 3 (IRF3) resulting in reduced phosphorylation of IRF3 and reduced activation of IFN-λ1 promoter. Furthermore, we showed that ZIKV NS5 interacts with the protein kinase IKKε, which is likely critical to the observed inhibition of phosphorylation of IRF3.


Subject(s)
I-kappa B Kinase/metabolism , Interferon Regulatory Factor-3/metabolism , Interferons/genetics , Interleukins/genetics , Signal Transduction , Viral Nonstructural Proteins/metabolism , Zika Virus/physiology , Cell Line , DEAD Box Protein 58/metabolism , Humans , Interferon-beta/genetics , Interferon-beta/metabolism , Interferons/metabolism , Interleukins/metabolism , NF-kappa B/metabolism , Phosphorylation , Promoter Regions, Genetic , Protein Binding , Receptors, Immunologic , Viral Nonstructural Proteins/genetics , Zika Virus/metabolism , Zika Virus Infection/metabolism , Zika Virus Infection/virology
7.
Virology ; 509: 23-34, 2017 09.
Article in English | MEDLINE | ID: mdl-28595092

ABSTRACT

Ebolaviruses (EBOV) cause severe disease with a recent outbreak in West Africa in 2014-2015 leading to more than 28 000 cases and 11 300 fatalities. This emphasizes the urgent need for better knowledge on these highly pathogenic RNA viruses. Host innate immune responses play a key role in restricting the spread of a viral disease. In this study we systematically analyzed the effects of cloned EBOV genes on the main host immune response to RNA viruses: the activation of RIG-I pathway and type I and III interferon (IFN) gene expression. EBOV VP24, in addition of inhibiting IFN-induced antiviral responses, was found to efficiently inhibit type III IFN-λ1 gene expression. This inhibition was found to occur downstream of IRF3 activation and to be dependent on VP24 importin binding residues. These results emphasize the importance of VP24 in EBOV infection cycle, making VP24 as an excellent target for drug development.


Subject(s)
Ebolavirus/immunology , Ebolavirus/pathogenicity , Host-Pathogen Interactions , Immune Evasion , Immunity, Innate , Interleukins/antagonists & inhibitors , Viral Proteins/metabolism , Cell Line , Gene Expression Regulation , Humans , Interferons
8.
J Virol Methods ; 242: 35-45, 2017 04.
Article in English | MEDLINE | ID: mdl-28025125

ABSTRACT

There is an urgent need for Ebola virus (EBOV) proteins, EBOV-specific antibodies and recombinant antigens to be used in diagnostics and as potential vaccine candidates. Our objective was to produce and purify recombinant proteins for immunological assays and for the production of polyclonal EBOV specific antibodies. In addition, a limited comparison of the adjuvant effects of Freund's complete adjuvant (FCA) and adjuvant system 03 (AS03) was carried out. Recombinant EBOV GST-VP24, -VP30, -VP35, -VP40 and -NP were produced in E. coli and purified with affinity chromatography followed by preparative gel electrophoresis. Recombinant EBOV GP-His was produced in Sf9 insect cells and purified by preparative gel electrophoresis. To compare the adjuvant effect of FCA and AS03, 12 rabbits were immunized four times with one of the six recombinant EBOV proteins using FCA or AS03. In addition, three guinea pigs were immunized with EBOV VP24 using FCA. With the exception of sera from two rabbits immunized with GST-VP24, the antisera against all other EBOV proteins showed very high and specific antibody responses after three to four immunizations. The adjuvant effect of AS03 was comparable to that of FCA. The produced antibodies recognized the corresponding EBOV proteins in wild type EBOV-infected cells.


Subject(s)
Adjuvants, Immunologic , Ebolavirus/immunology , Freund's Adjuvant , Polysorbates , Squalene , Viral Proteins/immunology , Viral Proteins/isolation & purification , alpha-Tocopherol , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/blood , Antibodies, Viral/immunology , Baculoviridae/genetics , Drug Combinations , Ebolavirus/chemistry , Ebolavirus/isolation & purification , Freund's Adjuvant/supply & distribution , Guinea Pigs , Rabbits , Recombinant Proteins/immunology , Recombinant Proteins/isolation & purification , Viral Proteins/genetics
9.
J Gen Virol ; 97(2): 344-355, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26602089

ABSTRACT

In this study we assessed the ability of Middle East respiratory syndrome coronavirus (MERS-CoV) to replicate and induce innate immunity in human monocyte-derived macrophages and dendritic cells (MDDCs), and compared it with severe acute respiratory syndrome coronavirus (SARS-CoV). Assessments of viral protein and RNA levels in infected cells showed that both viruses were impaired in their ability to replicate in these cells. Some induction of IFN-λ1, CXCL10 and MxA mRNAs in both macrophages and MDDCs was seen in response to MERS-CoV infection, but almost no such induction was observed in response to SARS-CoV infection. ELISA and Western blot assays showed clear production of CXCL10 and MxA in MERS-CoV-infected macrophages and MDDCs. Our data suggest that SARS-CoV and MERS-CoV replicate poorly in human macrophages and MDDCs, but MERS-CoV is nonetheless capable of inducing a readily detectable host innate immune response. Our results highlight a clear difference between the viruses in activating host innate immune responses in macrophages and MDDCs, which may contribute to the pathogenesis of infection.


Subject(s)
Dendritic Cells/immunology , Dendritic Cells/virology , Macrophages/immunology , Macrophages/virology , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Virus Replication , Adult , Chemokine CXCL10/metabolism , Humans , Immunity, Innate , Myxovirus Resistance Proteins/metabolism , RNA, Viral/analysis , Severe acute respiratory syndrome-related coronavirus/immunology , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Proteins/analysis
10.
J Clin Virol ; 62: 8-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25542463

ABSTRACT

BACKGROUND: Type I interferon induced MxA response can differentiate viral from bacterial infections, but MxA responses in rhinovirus or asymptomatic virus infections are not known. OBJECTIVE: To study MxA protein levels in healthy state and during respiratory virus infection of young children in an observational prospective cohort. STUDY DESIGN: Blood samples and nasal swabs were collected from 153 and 77 children with and without symptoms of respiratory infections, respectively. Blood MxA protein levels were measured by an enzyme immunoassay and PCR methods were used for the detection of respiratory viruses in nasal swabs. RESULTS: Respiratory viruses were detected in 81% of symptomatic children. They had higher blood MxA protein levels (median [interquartile range]) than asymptomatic virus-negative children (695 [345-1370] µg/L vs. 110 [55-170] µg/L; p < 0.001). Within asymptomatic children, no significant difference was observed in MxA responses between virus-positive and virus-negative groups. A cut-off level of 175 µg/L had 92% sensitivity and 77% specificity for a symptomatic respiratory virus infection. Rhinovirus, respiratory syncytial virus, parainfluenza virus, influenza virus, coronavirus, and human metapneumovirus infections were associated with elevated MxA responses. Asymptomatic virus-negative children vaccinated with a live virus vaccine had elevated MxA protein levels (240 [120-540] µg/L), but significantly lower than children with an acute respiratory infection, who had not received vaccinations (740 [350-1425] µg/L; p<0.001). CONCLUSION: Blood MxA protein levels are increased in young children with symptomatic respiratory virus infections, including rhinovirus infections. MxA is an informative general marker for the most common acute virus infections.


Subject(s)
Myxovirus Resistance Proteins/blood , Respiratory Tract Infections/blood , Respiratory Tract Infections/virology , Biomarkers/blood , C-Reactive Protein , Female , Humans , Infant , Leukocyte Count , Male , Prospective Studies , Respiratory Tract Infections/diagnosis
11.
Virol J ; 11: 128, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25023993

ABSTRACT

BACKGROUND: The influenza A virus NS1 protein is a virulence factor and an antagonist of host cell innate immune responses. During virus infection NS1 protein has several functions both in the nucleus and in the cytoplasm and its intracellular localization is regulated by one or two nuclear localization signals (NLS) and a nuclear export signal (NES). METHODS: In order to investigate the role of NS1 NES in intracellular localization, virus life cycle and host interferon responses, we generated recombinant A/Udorn/72 viruses harboring point mutations in the NES sequence. RESULTS: NS1 NES was found to be inactivated by several of the mutations resulting in nuclear retention of NS1 at late stages of infection confirming that this sequence is a bona fide functional NES. Some of the mutant viruses showed reduced growth properties in cell culture, inability to antagonize host cell interferon production and increased p-IRF3 levels, but no clear correlation between these phenotypes and NS1 localization could be made. Impaired activation of Akt phosphorylation by the replication-deficient viruses indicates possible disruption of NS1-p85ß interaction by mutations in the NES region. CONCLUSION: We conclude that mutations within the NS1 NES result in impairment of several NS1 functions which extends further from the NES site being only involved in regulating the nuclear-cytoplasmic trafficking of NS1.


Subject(s)
Conserved Sequence , Influenza A virus/genetics , Mutation , Nuclear Export Signals/genetics , Viral Nonstructural Proteins/genetics , Virus Replication/genetics , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Cell Nucleus/metabolism , Cleavage And Polyadenylation Specificity Factor/metabolism , Cytoplasm/metabolism , Humans , Influenza, Human/virology , Interferon-gamma/biosynthesis , Karyopherins/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Protein Transport , Receptors, Cytoplasmic and Nuclear/metabolism , Viral Nonstructural Proteins/chemistry , Exportin 1 Protein
12.
PLoS One ; 8(8): e68402, 2013.
Article in English | MEDLINE | ID: mdl-23950869

ABSTRACT

BACKGROUND: Narcolepsy cataplexy syndrome, characterised by excessive daytime sleepiness and cataplexy, is strongly associated with a genetic marker, human leukocyte antigen (HLA) DQB1*06:02. A sudden increase in the incidence of childhood narcolepsy was observed after vaccination with AS03-adjuvanted Pandemrix influenza vaccine in Finland at the beginning of 2010. Here, we analysed whether the coinciding influenza A H1N1pdm pandemic contributed, together with the Pandemrix vaccination, to the increased incidence of childhood narcolepsy in 2010. The analysis was based on the presence or absence of antibody response against non-structural protein 1 (NS1) from H1N1pdm09 virus, which was not a component of Pandemrix vaccine. METHODS: Non-structural (NS) 1 proteins from recombinant influenza A/Udorn/72 (H3N2) and influenza A/Finland/554/09 (H1N1pdm09) viruses were purified and used in Western blot analysis to determine specific antibody responses in human sera. The sera were obtained from 45 patients who fell ill with narcolepsy after vaccination with AS03-adjuvanted Pandemrix at the end of 2009, and from controls. FINDINGS: Based on quantitative Western blot analysis, only two of the 45 (4.4%) Pandemrix-vaccinated narcoleptic patients showed specific antibody response against the NS1 protein from the H1N1pdm09 virus, indicating past infection with the H1N1pdm09 virus. Instead, paired serum samples from patients, who suffered from a laboratory confirmed H1N1pdm09 infection, showed high levels or diagnostic rises (96%) in H1N1pdm virus NS1-specific antibodies and very high cross-reactivity to H3N2 subtype influenza A virus NS1 protein. CONCLUSION: Based on our findings, it is unlikely that H1N1pdm09 virus infection contributed to a sudden increase in the incidence of childhood narcolepsy observed in Finland in 2010 after AS03-adjuvanted Pandemrix vaccination.


Subject(s)
Influenza A Virus, H1N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/therapeutic use , Influenza, Human/complications , Influenza, Human/immunology , Narcolepsy/etiology , Adolescent , Antibody Formation , Child , Child, Preschool , Finland/epidemiology , Humans , Influenza A Virus, H3N2 Subtype/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Pandemics , Serologic Tests , Viral Nonstructural Proteins/immunology
13.
J Med Virol ; 85(1): 71-82, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23096996

ABSTRACT

Hepatitis C virus (HCV) encodes for several proteins that can interfere with host cell signaling and antiviral response. Previously, serine protease NS3/4A was shown to block host cell interferon (IFN) production by proteolytic cleavage of MAVS and TRIF, the adaptor molecules of the RIG-I and TLR3 signaling pathways, respectively. This study shows that another HCV protease, NS2 can interfere efficiently with cytokine gene expression. NS2 and its proteolytically inactive mutant forms were able to inhibit type I and type III IFN, CCL5 and CXCL10 gene promoters activated by Sendai virus infection. However, the CXCL8 gene promoter was not inhibited by NS2. In addition, constitutively active RIG-I (ΔRIG-I), MAVS, TRIF, IKKε, and TBK1-induced activation of IFN-ß promoter was inhibited by NS2. Cotransfection experiments with IKKε or TBK1 together with interferon regulatory factor 3 (IRF3) and HCV expression constructs revealed that NS2 in a dose-dependent manner inhibited IKKε and especially TBK1-induced IRF3 phosphorylation. GST pull-down experiments with GST-NS2 and in vitro-translated and cell-expressed IKKε and TBK1 demonstrated direct physical interactions of the kinases with NS2. Further evidence that the IKKε/TBK1 kinase complex is the target for NS2 was obtained from the observation that the constitutively active form of IRF3 (IRF3-5D) activated readily IFN-ß promoter in the presence of NS2. The present study identified HCV NS2 as a potent interferon antagonist, and describes an explanation of how NS2 downregulates the major signaling pathways involved in the development of host innate antiviral responses.


Subject(s)
Hepacivirus/pathogenicity , Host-Pathogen Interactions , I-kappa B Kinase/antagonists & inhibitors , Protein Serine-Threonine Kinases/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism , Centrifugation , Cytokines/antagonists & inhibitors , Hepacivirus/immunology , Humans , I-kappa B Kinase/immunology , Protein Binding , Protein Interaction Mapping , Protein Serine-Threonine Kinases/immunology , Viral Nonstructural Proteins/immunology
14.
J Virol ; 86(20): 11183-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22855501

ABSTRACT

The activation of the interferon (IFN) system, which is triggered largely by the recognition of viral nucleic acids, is one of the most important host defense reactions against viral infections. Although influenza A and B viruses, which both have segmented negative-strand RNA genomes, share major structural similarities, they have evolutionarily diverged, with total genetic incompatibility. Here we compare antiviral-inducing mechanisms during infections with type A and B influenza viruses in human dendritic cells. We observed that IFN responses are induced significantly faster in cells infected with influenza B virus than in cells infected with type A influenza virus and that the early induction of antiviral gene expression is mediated by the activation of the transcription factor IFN regulatory factor 3 (IRF3). We further demonstrate that influenza A virus infection activates IFN responses only after viral RNA (vRNA) synthesis, whereas influenza B virus induces IFN responses even if its infectivity is destroyed by UV treatment. Thus, initial viral transcription, replication, and viral protein synthesis are dispensable for influenza B virus-induced antiviral responses. Moreover, vRNA molecules from both type A and B viruses are equally potent activators of IFN induction, but incoming influenza B virus structures are recognized directly in the cytosol, while influenza A virus is able to evade early recognition. Collectively, our data provide new evidence of a novel antiviral evasion strategy for influenza A virus without a contribution of the viral NS1 protein, and this opens up new insights into different influenza virus pathogenicities.


Subject(s)
Dendritic Cells/virology , Influenza A virus/immunology , Influenza A virus/pathogenicity , Influenza B virus/immunology , Influenza B virus/pathogenicity , Interferon Regulatory Factor-3/metabolism , Interferons/biosynthesis , Animals , Cell Line , Dendritic Cells/immunology , Dogs , HEK293 Cells , Host-Pathogen Interactions , Humans , Immune Evasion , Influenza, Human/immunology , Interferons/immunology , Madin Darby Canine Kidney Cells , RNA, Viral/biosynthesis , Virus Internalization
15.
Virol J ; 9: 167, 2012 Aug 21.
Article in English | MEDLINE | ID: mdl-22909121

ABSTRACT

BACKGROUND: Influenza A virus non-structural protein 1 (NS1) is a virulence factor, which is targeted into the cell cytoplasm, nucleus and nucleolus. NS1 is a multi-functional protein that inhibits host cell pre-mRNA processing and counteracts host cell antiviral responses. Previously, we have shown that the NS1 protein of the H3N2 subtype influenza viruses possesses a C-terminal nuclear localization signal (NLS) that also functions as a nucleolar localization signal (NoLS) and targets the protein into the nucleolus. RESULTS: Here, we show that the NS1 protein of the human H3N2 virus subtype interacts in vitro primarily via its C-terminal NLS2/NoLS and to a minor extent via its N-terminal NLS1 with the nucleolar proteins, nucleolin and fibrillarin. Using chimeric green fluorescence protein (GFP)-NS1 fusion constructs, we show that the nucleolar retention of the NS1 protein is determined by its C-terminal NLS2/NoLS in vivo. Confocal laser microscopy analysis shows that the NS1 protein colocalizes with nucleolin in nucleoplasm and nucleolus and with B23 and fibrillarin in the nucleolus of influenza A/Udorn/72 virus-infected A549 cells. Since some viral proteins contain NoLSs, it is likely that viruses have evolved specific nucleolar functions. CONCLUSION: NS1 protein of the human H3N2 virus interacts primarily via the C-terminal NLS2/NoLS and to a minor extent via the N-terminal NLS1 with the main nucleolar proteins, nucleolin, B23 and fibrillarin.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Host-Pathogen Interactions , Influenza A Virus, H3N2 Subtype/physiology , Nuclear Localization Signals , Phosphoproteins/metabolism , Protein Interaction Mapping , RNA-Binding Proteins/metabolism , Viral Nonstructural Proteins/metabolism , Cell Line , Epithelial Cells/chemistry , Epithelial Cells/virology , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Humans , Microscopy, Confocal , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Staining and Labeling , Nucleolin
16.
Virol J ; 6: 84, 2009 Jun 23.
Article in English | MEDLINE | ID: mdl-19549310

ABSTRACT

BACKGROUND: The viral genome of hepatitis C virus constitutes a 9.6-kb single-stranded positive-sense RNA which encodes altogether 11 viral proteins. In order to study the humoral immune responses against different HCV proteins in patients suffering from chronic HCV infection, we produced three structural (core, E1 and E2) and six nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A and NS5B) in Sf9 insect cells by using the baculovirus expression system. RESULTS: The recombinant HCV core, E1, E2, NS2, NS3, NS4A, NS4B, NS5A and NS5B proteins were purified and used in Western blot analysis to determine antibody responses against individual HCV protein in 68 HCV RNA and antibody positive human sera that were obtained from patients suffering from genotype 1, 2, 3 or 4 infection. These sera were also analysed with INNO-LIA Score test for HCV antibodies against core, NS3, NS4AB and NS5A, and the results were similar to the ones obtained by Western blot method. Based on our Western blot analyses we found that the major immunogenic HCV antigens were the core, NS4B, NS3 and NS5A proteins which were recognized in 97%, 86%, 68% and 53% of patient sera, respectively. There were no major genotype specific differences in antibody responses to individual HCV proteins. A common feature within the studied sera was that all except two sera recognized the core protein in high titers, whereas none of the sera recognized NS2 protein and only three sera (from genotype 3) recognised NS5B. CONCLUSION: The data shows significant variation in the specificity in humoral immunity in chronic HCV patients.


Subject(s)
Antibodies, Viral/blood , Hepatitis C, Chronic/immunology , Viral Core Proteins/immunology , Viral Nonstructural Proteins/immunology , Antigens, Viral/immunology , Blotting, Western , Hepacivirus/immunology , Humans
17.
J Virol ; 83(2): 701-11, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18987144

ABSTRACT

Many proteins that function in the transcription, maturation, and export of metazoan mRNAs are concentrated in nuclear speckle domains, indicating that the compartment is important for gene expression. Here, we show that the NS1 protein of influenza B virus (B/NS1) accumulates in nuclear speckles and causes rounding and morphological changes of the domains, indicating a disturbance in their normal functions. This property was located within the N-terminal 90 amino acids of the B/NS1 protein and was shown to be independent of any other viral gene product. Within this protein domain, we identified a monopartite importin alpha binding nuclear localization signal. Reverse-genetic analysis of this motif indicated that nuclear import and speckle association of the B/NS1 protein are required for the full replication capacity of the virus. In the late phase of virus infection, the B/NS1 protein relocated to the cytoplasm, which occurred in a CRM1-independent manner. The interaction of the B/NS1 protein with nuclear speckles may reflect a recruitment function to promote viral-gene expression. To our knowledge, this is the first functional description of a speckle-associated protein that is encoded by a negative-strand RNA virus.


Subject(s)
Influenza B virus/physiology , Viral Nonstructural Proteins/metabolism , Virus Replication , Animals , Cell Line , Cell Nucleus/chemistry , Cytoplasm/chemistry , Humans , Nuclear Localization Signals , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Spodoptera , Viral Nonstructural Proteins/genetics
18.
Cell Signal ; 20(8): 1442-51, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18462924

ABSTRACT

In resting cells NF-kappaB transcription factors are retained in the cytoplasm as latent inactive complexes, until they are activated and rapidly transported into the nucleus. We show that all NF-kappaB proteins are imported into the nucleus via a subset of importin alpha isoforms. Our data indicate that the NF-kappaB components of the classical and alternative pathways have somewhat different specifities to importin alpha molecules. Based on the results from binding experiments of in vitro-translated and Sendai virus infection-induced or TNF-alpha-stimulated endogenous NF-kappaB proteins, it can be predicted that the specifity of NF-kappaB proteins to importin alpha molecules is different and changes upon the composition of the imported dimer. p52 protein binds directly to importin alpha3, alpha4, alpha5 and alpha6 and c-Rel binds to importin alpha5, alpha6 and alpha7 via a previously described monopartite nuclear localization signals (NLSs). Here we show that RelB, instead, has a bipartite arginine/lysine-rich NLS that mediates the binding of RelB to importin alpha5 and alpha6 and subsequent nuclear translocation of the protein. Moreover, we show that the nuclear import of p52/RelB heterodimers is mediated exclusively by the NLS of RelB. In addition, we found that the NLS of p52 mediates the nuclear import of p52/p65 heterodimers.


Subject(s)
Cell Nucleus/metabolism , NF-kappa B p52 Subunit/metabolism , Proto-Oncogene Proteins c-rel/metabolism , Transcription Factor RelB/metabolism , alpha Karyopherins/metabolism , Active Transport, Cell Nucleus , Cell Line, Tumor , Dimerization , Humans , Kinetics , NF-kappa B p52 Subunit/chemistry , Nuclear Localization Signals , Protein Isoforms/metabolism , Proto-Oncogene Proteins c-rel/chemistry , Transcription Factor RelB/chemistry
19.
J Biol Chem ; 283(9): 5719-27, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18165234

ABSTRACT

NS1 (nonstructural protein 1) is an important virulence factor of the influenza A virus. We observed that NS1 proteins of the 1918 pandemic virus (A/Brevig Mission/1/18) and many avian influenza A viruses contain a consensus Src homology 3 (SH3) domain-binding motif. Screening of a comprehensive human SH3 phage library revealed the N-terminal SH3 of Crk and CrkL as the preferred binding partners. Studies with recombinant proteins confirmed avid binding of NS1 proteins of the 1918 virus and a representative avian H7N3 strain to Crk/CrkL SH3 but not to other SH3 domains tested, including p85alpha and p85beta. Endogenous CrkL readily co-precipitated NS1 from cells infected with the H7N3 virus. In transfected cells association with CrkL was observed for NS1 of the 1918 and H7N3 viruses but not A/Udorn/72 or A/WSN/33 NS1 lacking this sequence motif. SH3 binding was dispensable for suppression of interferon-induced gene expression by NS1 but was associated with enhanced phosphatidylinositol 3-kinase signaling, as evidenced by increased Akt phosphorylation. Thus, the Spanish Flu virus resembles avian influenza A viruses in its ability to recruit Crk/CrkL to modulate host cell signaling.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Influenza A Virus, H1N1 Subtype/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Signal Transduction/physiology , Viral Nonstructural Proteins/metabolism , Virulence Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Amino Acid Motifs/physiology , Cell Line , Gene Expression Regulation, Viral/physiology , Humans , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/pathogenicity , Interferons/metabolism , Nuclear Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-crk/genetics , Species Specificity , Viral Nonstructural Proteins/genetics , Virulence Factors/genetics , src Homology Domains/physiology
20.
J Gen Virol ; 89(Pt 2): 432-443, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18198374

ABSTRACT

The hepatitis C virus (HCV) non-structural (NS) 3/4A protein complex inhibits the retinoic acid inducible gene I (RIG-I) pathway by proteolytically cleaving mitochondria-associated CARD-containing adaptor protein Cardif, and this leads to reduced production of beta interferon (IFN-beta). This study examined the expression of CCL5 (regulated upon activation, normal T-cell expressed and secreted, or RANTES), CXCL8 (interleukin 8) and CXCL10 (IFN-gamma-activated protein 10, or IP-10) chemokine genes in osteosarcoma cell lines that inducibly expressed NS3/4A, NS4B, core-E1-E2-p7 and the entire HCV polyprotein. Sendai virus (SeV)-induced production of IFN-beta, CCL5, CXCL8 and CXCL10 was downregulated by the NS3/4A protein complex and by the full-length HCV polyprotein. Expression of NS3/4A and the HCV polyprotein reduced the binding of interferon regulatory factors (IRFs) 1 and 3 and, to a lesser extent, nuclear factor (NF)-kappaB (p65/p50) to their respective binding elements on the CXCL10 promoter during SeV infection. Furthermore, binding of IRF1 and IRF3 to the interferon-stimulated response element-like element, and of c-Jun and phosphorylated c-Jun to the activator protein 1 element of the CXCL8 promoter, was reduced when NS3/4A and the HCV polyprotein were expressed. In cell lines expressing NS3/4A and the HCV polyprotein, the subcellular localization of mitochondria was changed, and this was kinetically associated with the partial degradation of endogenous Cardif. These results indicate that NS3/4A alone or as part of the HCV polyprotein disturbs the expression of IRF1- and IRF3-regulated genes, as well as affecting mitogen-activated protein kinase kinase- and NF-kappaB-regulated genes.


Subject(s)
Chemokines/metabolism , Gene Expression Regulation, Viral/drug effects , Hepacivirus/chemistry , Hepatitis C/genetics , Promoter Regions, Genetic/drug effects , Chemokines/genetics , Down-Regulation , Hepacivirus/genetics , Hepatitis C/metabolism , Hepatitis C/virology , Mitochondria/physiology , Polyproteins/metabolism , Promoter Regions, Genetic/physiology , Signal Transduction/drug effects , Tumor Cells, Cultured , Viral Nonstructural Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...