Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-33152473

ABSTRACT

Temperature is a crucial environmental factor that influences physiological functions in fishes, and increased temperature during development can shape an organism's phenotype. An active line of inquiry in comparative developmental physiology is whether short-term exposure to thermal changes have lasting phenotypic effects. This is the first study to apply a developmental 3-dimensional critical window experimental design for a vertebrate, using time, temperature, and phenotypic response (i.e., variables measured). Rainbow trout (Oncorhynchus mykiss) are an anadromous species for which resident populations occupy freshwater environments that are likely impacted by variable and rising temperatures, particularly during embryonic development. To assess thermal effects on fish development, we examined trout hatchling phenotypes following rearing in constant temperatures (5, 10, 15 and 17.5 °C) and following exposure to increased temperature above 5 °C during specific developmental windows. Time to 50% hatch, hatchling mass and body length showed general trends of decreasing with increasing constant temperature, and survival was highest in constant 10 °C incubation. Thermally shifting embryos into 17.5 °C during gastrulation and organogenesis reduced survival at hatch compared to 10 °C, and exposure to 15 and 17.5 °C only late in development produced lighter and shorter hatchlings. Oxygen consumption rate (V̇o2) at organogenesis differed between embryos incubated constantly in increased temperature or exposed only during organogenesis, but generally we found limited temperature effects on V̇o2 that may be due to high data variability. Collectively, these results suggest that survival of rainbow trout hatchlings is most sensitive to 17.5 °C exposure during gastrulation and organogenesis, while warm water exposure later in development has greater impacts on morphology. Thus, trait-specific critical windows of thermal sensitivity exist for rainbow trout embryos that alter the hatching phenotype.


Subject(s)
Embryo, Nonmammalian/physiology , Oncorhynchus mykiss/physiology , Oxygen Consumption/physiology , Animals , Oncorhynchus mykiss/embryology , Survival Analysis
2.
Article in English | MEDLINE | ID: mdl-30114471

ABSTRACT

Lake whitefish (Coregonus clupeaformis) utilize overwintering embryonic development (up to 180 days), and such stenothermic, cold-water embryos may be particularly susceptible to thermal shifts. We incubated whitefish embryos in temperature treatments that were constant temperature (2.0 ±â€¯0.1 °C, 5.0 ±â€¯0.1 °C, and 8.0 ±â€¯0.1 °C; mean ±â€¯SD) or variable temperature (VT, mean = 5.0 ±â€¯0.3 °C). In the VT, a daily 2 °C temperature change followed a continuous pattern throughout development: 2-4-6-8-6-4-2 °C. Hatchling survival proportion from fertilization to hatch was significantly impacted by incubation temperature (P < 0.001): 2 °C (0.88 ±â€¯0.01) and 5 °C (0.91 ±â€¯0.01) showed higher survival than both the VT (0.83 ±â€¯0.02) and 8 °C groups (0.15 ±â€¯0.06), which were statistically distinct from each other. Time to hatch (dpf) was significantly different across all treatments (P < 0.001): 8 °C (68 ±â€¯2 dpf), VT (111 ±â€¯4 dpf), 5 °C (116 ±â€¯4 dpf), 2 °C (170 ±â€¯3 dpf). Likewise, hatchling yolk-free dry mass (mg) and total body length (mm) were significantly different across all treatments (P < 0.001): 8 °C (0.66 ±â€¯0.08 mg; 11.1 ±â€¯0.08 mm), VT (0.97 ±â€¯0.06 mg; 11.7 ±â€¯0.05 mm), 5 °C (1.07 ±â€¯0.03 mg; 12.0 ±â€¯0.02 mm), 2 °C (1.36 ±â€¯0.04 mg; 12.8 ±â€¯0.05 mm). Oxygen consumption rate (V̇o2) was significantly affected by the interaction between treatment and measurement temperature (P < 0.001). Hatchling VT whitefish showed mean V̇o2 that was higher compared to the 2 °C group measured at 2 °C, and lower compared to the 2 °C and 5 °C group measured at 8 °C. This study demonstrates that the VT incubation treatment produced fewer (increased mortality), smaller embryos that hatched earlier than 2 °C and 5 °C embryos. The plasticity of V̇o2 for this stenothermic-incubating fish species under variable incubation conditions reveals a metabolic cost to cycling thermal incubation conditions.


Subject(s)
Salmonidae/physiology , Animals , Embryo, Nonmammalian/physiology , Embryonic Development , Oxygen Consumption/physiology , Salmonidae/embryology , Salmonidae/growth & development , Salmonidae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...