Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 383(3): 208-216, 2022 12.
Article in English | MEDLINE | ID: mdl-36153003

ABSTRACT

Chronic ethanol exposure affects the glutamatergic system in several brain reward regions including the nucleus accumbens (NAc). Our laboratory has shown that chronic exposure to ethanol reduced the expression of glutamate transporter 1 (GLT-1) and cystine/glutamate exchanger (xCT) and, as a result, increased extracellular glutamate concentrations in the NAc of alcohol-preferring (P) rats. Moreover, previous studies from our laboratory reported that chronic ethanol intake altered the expression of certain metabotropic glutamate receptors in the brain. In addition to central effects, chronic ethanol consumption induced liver injury, which is associated with steatohepatitis. In the present study, we investigated the effects of chronic ethanol consumption in the brain and liver. Male P rats had access to a free choice of ethanol and water bottles for five weeks. Chronic ethanol consumption reduced GLT-1 and xCT expression in the NAc shell but not in the NAc core. Furthermore, chronic ethanol consumption increased fat droplet content as well as peroxisome proliferator-activated receptor alpha (PPAR-α) and GLT-1 expression in the liver. Importantly, treatment with the novel beta-lactam compound, MC-100093, reduced ethanol drinking behavior and normalized the levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver. These findings suggest that MC-100093 may be a potential lead compound to attenuate ethanol-induced dysfunction in the glutamatergic system and liver injury. SIGNIFICANCE STATEMENT: This study identified a novel beta-lactam, MC-100093, that has demonstrated upregulatory effects on GLT-1. MC-100093 reduced ethanol drinking behavior and normalized levels of GLT-1 and xCT expression in the NAc shell as well as normalized GLT-1 and PPAR-α expression in the liver. In addition, MC-100093 attenuated ethanol-induced increases in fat droplet content in the liver.


Subject(s)
Excitatory Amino Acid Transporter 2 , beta-Lactams , Animals , Male , Rats , Alcohol Drinking/metabolism , beta-Lactams/pharmacology , Ethanol/pharmacology , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Nucleus Accumbens , Peroxisome Proliferator-Activated Receptors
2.
Bioorg Med Chem Lett ; 30(2): 126806, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31757667

ABSTRACT

Gaucher disease (GD) results from inherited mutations in the lysosomal enzyme ß-glucocerobrosidase (GCase). Currently available treatment options for Type 1 GD are not efficacious for treating neuronopathic Type 2 and 3 GD due to their inability to cross the blood-brain barrier. In an effort to identify small molecules which could be optimized for CNS penetration we identified tamoxifen from a high throughput phenotypic screen on Type 2 GD patient-derived fibroblasts which reversed the disease phenotype. Structure activity studies around this scaffold led to novel molecules that displayed improved potency, efficacy and reduced estrogenic/antiestrogenic activity compared to the original hits. Here we present the design, synthesis and structure activity relationships that led to the lead molecule Compound 31.


Subject(s)
Fibroblasts/metabolism , Gaucher Disease/pathology , Small Molecule Libraries/chemistry , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/drug effects , Gaucher Disease/metabolism , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Inhibitory Concentration 50 , Lysosomes/drug effects , Lysosomes/metabolism , Phenotype , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship , Tamoxifen/chemistry , Tamoxifen/metabolism
3.
Bioorg Med Chem Lett ; 22(23): 7119-22, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-23079530

ABSTRACT

We have developed a new series of progesterone receptor modulators based upon the 4-aryl-phenylsulfonamide. Initial work in the series afforded potent compounds with good properties, however an advanced intermediate proved to be genotoxic in a non-GLP Ames assay following metabolic activation. We subsequently solved this problem and identified advanced leads which demonstrated oral efficacy in rhesus monkey pharmacodynamic and kinetics models.


Subject(s)
Receptors, Progesterone/agonists , Receptors, Progesterone/antagonists & inhibitors , Sulfonamides/chemistry , Administration, Oral , Alkaline Phosphatase/metabolism , Animals , Cell Line, Tumor , Half-Life , Humans , Macaca mulatta , Male , Rats , Receptors, Progesterone/metabolism , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics
4.
J Med Chem ; 51(6): 1861-73, 2008 Mar 27.
Article in English | MEDLINE | ID: mdl-18318463

ABSTRACT

We have continued to explore the 3,3-dialkyl-5-aryloxindole series of progesterone receptor (PR) modulators looking for new agents to be used in female healthcare: contraception, fibroids, endometriosis, and certain breast cancers. Previously we reported that subtle structural changes with this and related templates produced functional switches between agonist and antagonist properties ( Fensome et al. Biorg. Med. Chem. Lett. 2002, 12, 3487; 2003, 13, 1317 ). We herein report a new functional switch within the 5-(2-oxoindolin-5-yl)-1 H-pyrrole-2-carbonitrile class of compounds. We found that the size of the 3,3-dialkyl substituent is important for controlling the functional response; thus small groups (dimethyl) afford potent PR antagonists, whereas larger groups (spirocyclohexyl) are PR agonists. The product from our optimization activities in cell-based systems and also for kinetic properties in rodents and nonhuman primates was 5-(7-fluoro-3,3-dimethyl-2-oxo-2,3-dihydro-1 H-indol-5-yl)-1-methyl-1 H-pyrrole-2-carbonitrile 27 (WAY-255348), which demonstrated potent and robust activity on PR antagonist and contraceptive end points in the rat and also in cynomolgus and rhesus monkeys including ovulation inhibition, menses induction, and reproductive tract morphology.


Subject(s)
Drug Design , Indoles/chemistry , Indoles/chemical synthesis , Indoles/pharmacology , Pyrroles/chemistry , Receptors, Progesterone/antagonists & inhibitors , Administration, Oral , Alkaline Phosphatase/drug effects , Animals , Dose-Response Relationship, Drug , Female , Humans , Macaca fascicularis , Macaca mulatta , Molecular Structure , Ovulation/drug effects , Oxindoles , Pyrroles/chemical synthesis , Pyrroles/pharmacology , Rats , Receptors, Progesterone/chemistry , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...