Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(3)2023 Jan 23.
Article in English | MEDLINE | ID: mdl-36771599

ABSTRACT

Ceratonia siliqua L. (carob tree) is an endemic plant to the eastern Mediterranean region. In the present study, anatomical and physiological traits of successively grown compound leaves (i.e., the first, third, fifth and seventh leaves) of C. siliqua were investigated in an attempt to evaluate their growth under urban and suburban environmental conditions. Chlorophyll and phenolic content, as well as the specific leaf area of the compound leaves were determined. Structural traits of leaflets (i.e., thickness of palisade and spongy parenchyma, abaxial and adaxial epidermis, as well as abaxial and adaxial periclinal wall) were also investigated in expanding and fully expanded leaflets. Fully expanded leaflets from urban sites exhibited increased thickness of the lamina and the palisade parenchyma, while the thickness of the spongy parenchyma was thicker in suburban specimens. The palisade tissue was less extended than the spongy tissue in expanding leaflets, while the opposite held true for the expanded leaflets. Moreover, the thickness of the adaxial and the abaxial epidermises, as well as the adaxial and abaxial periclinal wall were higher in suburban leaflets. The chlorophyll content increased concomitantly with the specific leaf area (SLA) of both expanding and expanded leaflets, and strong positive correlations were detected, while the phenolic content declined with the increased SLA of expanding and expanded leaflets. It is noteworthy that the SLA of expanding leaflets in the suburban site was comparable to the SLA of expanded leaflets experiencing air pollution in urban sites; the size and the mass of leaf blades of C. siliqua possess adaptive features to air pollution. These results, linked to the functional structure of expanding and expanded successive foliar tissues, provide valuable assessment information coordinated with an adaptive process and yield of carob trees exposed to the considered ambient conditions, which have not hitherto been published.

2.
Plants (Basel) ; 11(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35567255

ABSTRACT

The geophyte Cyclamen graecum is native to the eastern Mediterranean. Its beautiful flowers with upswept pink petals appear during early autumn, after the summer drought period and before leaf expansion in late autumn. The floral and leaf development alternates with their cessation in early winter and late spring, respectively. Ecophysiological parameters and processes underlining the life-cycle of C. graecum have not previously been published. Seasonal fluctuations of sugars, starch, and free proline have been investigated in tubers, leaves, pedicels, and petals, as well as petal and leaf water status. At the whole plant level, the seasonal co-existence of leaves and flowers is marked by an elevated soluble sugar content, which was gradually reduced as the above-ground plant parts shed. The sugar content of petals and pedicels was lower than that of leaves and tubers. Leaf starch content increased from late autumn to spring and was comparable to that of tubers. The starch content in petals and pedicels was substantially lower than that of tubers and leaves. In tubers, monthly proline accumulation was sustained at relatively constant values. Although the partitioning of proline in various organs did not show a considerable seasonal variation, resulting in an unchanged profile of the trends between tubers, leaves, and flowers, the seasonal differences in proline accumulation were remarkable at the whole plant level. The pronounced petal proline content during the flowering period seems to be associated with the maintenance of floral turgor. Leaf proline content increased with the advance of the growth season. The values of leaf relative water content were sustained fairly constant before the senescence stage, but lower than the typical values of turgid and transpiring leaves. Relationships of the studied parameters with rainfall indicate the responsiveness of C. graecum to water availability in its habitat in the Mediterranean ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...