Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2309397, 2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38644343

ABSTRACT

The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.

2.
ChemSusChem ; : e202400056, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38525654

ABSTRACT

The development of low-cost transition metal compounds with high-performance for efficient oxygen evolution reaction (OER) is of great significance in promoting the development of electrocatalysis. In this study, a Ce-doped Ni3S4 catalyst (Ce0.2-Ni3S4) was synthesized through a one-step solvothermal method, where the doped rare earth element Ce induced the transformation of NiS to Ni3S4. The Ce0.2-Ni3S4 catalyst exhibited excellent OER performance in 1 M KOH. At a current density of 10 mA cm-2, it showed a low overpotential of 230 mV and a low Tafel slope of 52.39 mV dec-1. Long-term OER tests at the same potential lasted for 24 h without significant loss of current density. This work introduces a novel method of Ce element doping for modifying transition metal sulfides, providing new insights into the effective utilization of rare earth elements in the field of electrochemistry. It creates more chances for the progress of highly efficient catalysts for efficient OER, contributing to the advancement of electrocatalysis.

3.
Int J Biol Macromol ; 254(Pt 1): 127767, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38287576

ABSTRACT

Water pollution by organic dyes is one of the most serious environmental problems worldwide. Malachite green (MG) is considered as one the serious organic dyes which is discharged in wastewater by leather and textile manufacturing plants. MG dye can cause severe hazards to the environment and human health. Therefore, the removal of MG dye from wastewater is very important and essential. This study aims to synthesize a new magnetic hydrochar grafted to chitosan (MWSHC@CS) for the removal of MG dye from the aqueous solutions. Transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area, and Zeta potential analysis were used to characterize the synthesized MWSHC@CS. Batch experiments were conducted to optimize MG dye adsorption conditions, including adsorbent mass, pH, temperature, initial concentration, and contact time. The results revealed that MWSHC@CS had an excellent removal efficiency (96.47 %) for MG dye at the optimum condition (at m: 20 mg, pH: 7.5, t: 420 min, and T: 298 K). Adsorption isotherms outcomes revealed the MG adsorption data were best fit by the Langmuir model with a maximum adsorption capacity (420.02 mg/g). Adsorption kinetics outcomes exhibited that the adsorption process of MG dye fitted well to the Elovich model. The thermodynamic results revealed that the adsorption process was physical, exothermic, and spontaneous. The adsorption mechanisms of MG onto MWSHC@CS were hydrogen bonding, electrostatic interaction, and π-π interactions. Furthermore, MWSHC@CS showed excellent reusability for the removal of MG over five cycles of adsorption-desorption (83.76 %). In conclusion, the study provides a new, low-cost, and effective magnetic nanocomposite based on chitosan as a promising adsorbent for the high-performance removal of MG dye from aqueous solutions.


Subject(s)
Chitosan , Rosaniline Dyes , Water Pollutants, Chemical , Humans , Adsorption , Wastewater , Chitosan/chemistry , Thermodynamics , Coloring Agents/chemistry , Water/chemistry , Kinetics , Magnetic Phenomena , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Spectroscopy, Fourier Transform Infrared
4.
ACS Omega ; 8(24): 21653-21663, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37360487

ABSTRACT

Biomass-derived activated carbons have gained significant attention as electrode materials for supercapacitors (SCs) due to their renewability, low-cost, and ready availability. In this work, we have derived physically activated carbon from date seed biomass as symmetric electrodes and PVA/KOH has been used as a gel polymer electrolyte for all-solid-state SCs. Initially, the date seed biomass was carbonized at 600 °C (C-600) and then it was used to obtain physically activated carbon through CO2 activation at 850 °C (C-850). The SEM and TEM images of C-850 displayed its porous, flaky, and multilayer type morphologies. The fabricated electrodes from C-850 with PVA/KOH electrolytes showed the best electrochemical performances in SCs (Lu et al. Energy Environ. Sci., 2014, 7, 2160) application. Cyclic voltammetry was performed from 5 to 100 mV s-1, illustrating an electric double layer behavior. The C-850 electrode delivered a specific capacitance of 138.12 F g-1 at 5 mV s-1, whereas it retained 16 F g-1 capacitance at 100 mV s-1. Our assembled all-solid-state SCs exhibit an energy density of 9.6 Wh kg-1 with a power density of 87.86 W kg-1. The internal and charge transfer resistances of the assembled SCs were 0.54 and 17.86 Ω, respectively. These innovative findings provide a universal and KOH-free activation process for the synthesis of physically activated carbon for all solid-state SCs applications.

5.
RSC Adv ; 13(19): 13094-13119, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37124012

ABSTRACT

Three new organic molecules having a benzimidazole base were synthesized and used for the protection of carbon steel (X56) against corrosion in 1.00 M HCl solution. The protection against corrosion was assessed by electrochemical frequency modulation (EFM), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP). In addition, the electronic and molecular structure of the synthesized molecules were computationally investigated and correlated to corrosion inhibition. Global reactivity descriptors, molecular orbitals (FMO and NBO) and local reactivity descriptors (molecular electrostatic potential map and Fukui functions) were discussed. The results showed a maximum protective efficiency range between 95% and 98% indicating high corrosion inhibition. Moreover, all molecules were able to combat the cathodic as well as anodic reaction simultaneously, revealing a mixed-type resistance. SEM and EDX verified effective adhering film formation to the metal surface. In accordance, the theoretical calculations showed effective electron reallocation from the organic film to the X56 c-steel surface. Furthermore, the adsorption annealing calculations revealed that structural layers of these molecules hold parallel and close to the metal surface with adsorption energy from 249.383 to 380.794 kcal mol-1, showing strong inhibitor-metal contact.

6.
RSC Adv ; 12(50): 32488-32507, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36425733

ABSTRACT

Two new cobalt(ii) and chromium(iii) complexes were synthesized and characterized by FT-IR, 1HNMR, UV, elemental analysis, TGA, conductivity, XRD, SEM, and magnetic susceptibility measurements. Structural analysis revealed a bi-dentate chelation and octahedral geometry for the synthesized complexes. The optical band gap of the Co(ii)-L and Cr(iii)-L complexes was found to be 3.00 and 3.25 eV, respectively revealing semiconducting properties. The X-ray diffraction patterns showed nano-crystalline particles for the obtained complexes. In addition, the synthesized metal complexes were examined as corrosion inhibitors for mild steel in HCl solution. The electrochemical investigations showed a maximum inhibition efficiency of 96.60% for Co(ii)-L and 95.45% for Cr(iii)-L where both complexes acted as mixed-type inhibitors. Frontier Molecular orbital (FMO) and Natural bond orbital (NBO) computations showed good tendency of the ligand to donate electrons to the metal through nitrogen atoms while the resultant complexes tended to donate electrons to mild steel more effectively through oxygen atoms and phenyl groups. A comparison between experimental and theoretical findings was considered through the discussion.

7.
Environ Sci Pollut Res Int ; 28(8): 10234-10247, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33170468

ABSTRACT

The high-risk organic pollutants produced by industries are of growing concern. The highly porous coal-based activated carbon (AC) having a specific surface area of 3452.8 m2/g is used for the adsorption of azo dye from synthetic solution. The sorbent is characterized through BET, SEM, TEM, XRD, FT-IR, TGA, and zeta potential. The sorbent exhibits - 18.7 mV surface charge, which is high enough for making suspension. The maximum dye uptake of 333 mg/g is observed in sorbent under acidic medium. The thermodynamics parameters like ∆G, ∆H, and ΔS were found to be - 12.40 kJ mol-1, 39.66 kJ mol-1, and 174.55 J mol-1 K-1 at 293 K, respectively, revealing that the adsorption mechanism is spontaneous, endothermic, and feasible. The experimental data follows the Langmuir and D-R models. The adsorption follows pseudo 2nd-order kinetics. DFT investigation shows that the dye sorption onto AC in configuration No. 4 (CFG-4) is more effective, as this configuration has high ∆H (enthalpy change) and adsorption energy (Eads). This is confirmed by Mullikan atomic charge transfer phenomenon.


Subject(s)
Charcoal , Water Pollutants, Chemical , Adsorption , Azo Compounds , Coal , Hydrogen-Ion Concentration , Kinetics , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...