Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 8: 1733, 2017.
Article in English | MEDLINE | ID: mdl-29067032

ABSTRACT

With the commercialization and increasing availability of Unmanned Aerial Vehicles (UAVs) multiple rotor copters have expanded rapidly in plant phenotyping studies with their ability to provide clear, high resolution images. As such, the traditional bottleneck of plant phenotyping has shifted from data collection to data processing. Fortunately, the necessarily controlled and repetitive design of plant phenotyping allows for the development of semi-automatic computer processing tools that may sufficiently reduce the time spent in data extraction. Here we present a comparison of UAV and field based high throughput plant phenotyping (HTPP) using the free, open-source image analysis software FIJI (Fiji is just ImageJ) using RGB (conventional digital cameras), multispectral and thermal aerial imagery in combination with a matching suite of ground sensors in a study of two hybrids and one conventional barely variety with ten different nitrogen treatments, combining different fertilization levels and application schedules. A detailed correlation network for physiological traits and exploration of the data comparing between treatments and varieties provided insights into crop performance under different management scenarios. Multivariate regression models explained 77.8, 71.6, and 82.7% of the variance in yield from aerial, ground, and combined data sets, respectively.

2.
Fungal Genet Biol ; 79: 8-12, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26092783

ABSTRACT

Syngenta is one of the major agrochemical companies with enormous breadth of technologies in Crop Protection, Seeds and Seed Care. Through an exceptionally broad product range and research investment, we are not only able to provide the grower with integrated offers now but also truly innovative and transformative technologies in the future. In this commentary Syngenta scientists give their views on the key wheat pathogen Zymoseptoria tritici from its business importance in Europe, the way we screen new Z. tritici fungicides, the way we monitor the evolution of fungicide resistance and breed for Z. tritici resistance. These four points are continuously revisited and adapted during the development of new fungicides, and academic collaborations are critically important to stay at the fore front of developments in cell biology, physiology and genetic research.


Subject(s)
Ascomycota/drug effects , Breeding , Disease Resistance/genetics , Fungicides, Industrial/isolation & purification , Plant Diseases/microbiology , Plant Diseases/prevention & control , Triticum/microbiology , Europe , Triticum/genetics
3.
Plant Biotechnol J ; 11(3): 279-95, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23279710

ABSTRACT

Globally, wheat is the most widely grown crop and one of the three most important crops for human and livestock feed. However, the complex nature of the wheat genome has, until recently, resulted in a lack of single nucleotide polymorphism (SNP)-based molecular markers of practical use to wheat breeders. Recently, large numbers of SNP-based wheat markers have been made available via the use of next-generation sequencing combined with a variety of genotyping platforms. However, many of these markers and platforms have difficulty distinguishing between heterozygote and homozygote individuals and are therefore of limited use to wheat breeders carrying out commercial-scale breeding programmes. To identify exome-based co-dominant SNP-based assays, which are capable of distinguishing between heterozygotes and homozygotes, we have used targeted re-sequencing of the wheat exome to generate large amounts of genomic sequences from eight varieties. Using a bioinformatics approach, these sequences have been used to identify 95 266 putative single nucleotide polymorphisms, of which 10 251 were classified as being putatively co-dominant. Validation of a subset of these putative co-dominant markers confirmed that 96% were true polymorphisms and 65% were co-dominant SNP assays. The new co-dominant markers described here are capable of genotypic classification of a segregating locus in polyploid wheat and can be used on a variety of genotyping platforms; as such, they represent a powerful tool for wheat breeders. These markers and related information have been made publically available on an interactive web-based database to facilitate their use on genotyping programmes worldwide.


Subject(s)
Exome/genetics , Polymorphism, Single Nucleotide , Triticum/genetics , Chromosome Mapping , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...