Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 55(14): 6403-12, 2012 Jul 26.
Article in English | MEDLINE | ID: mdl-22742452

ABSTRACT

The medical and socioeconomic relevance of thromboembolic disorders promotes an ongoing effort to develop new anticoagulants. Heparin is widely used as activator of antithrombin but incurs side effects. We screened a large database in silico to find alternative molecules and predicted d-myo-inositol 3,4,5,6-tetrakisphosphate (TMI) to strongly interact with antithrombin. Isothermal titration calorimetry confirmed a TMI affinity of 45 nM, higher than the heparin affinity (273 nM). Functional studies, fluorescence analysis, and citrullination experiments revealed that TMI induced a partial activation of antithrombin that facilitated the interaction with heparin and low affinity heparins. TMI improved antithrombin inhibitory function of plasma from homozygous patients with antithrombin deficiency with a heparin binding defect and also in a model with endothelial cells. Our in silico screen identified a new, non-polysaccharide scaffold able to interact with the heparin binding domain of antithrombin. The functional consequences of this interaction were experimentally characterized and suggest potential anticoagulant therapeutic applications.


Subject(s)
Antithrombins/metabolism , Computational Biology , Drug Discovery , Heparin/metabolism , Inositol Phosphates/metabolism , Inositol Phosphates/pharmacology , Antithrombins/blood , Antithrombins/chemistry , Drug Evaluation, Preclinical , Humans , Models, Molecular , Protein Structure, Tertiary , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...