Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 19(29): 5513-5526, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37434584

ABSTRACT

Oil-in-water emulsions, stabilised with conventional surfactants, are commonly used in eye drops for ocular drug delivery. However, the presence of surfactants can sometimes irritate tissues. Furthermore, conventional emulsions often have poor retention on ocular tissue. Pickering emulsions stabilised with nanoparticles have been gaining attention in recent years for a range of biomedical applications because of their biocompatibility. Here, Pickering emulsions were evaluated for the first time for the confinement of organic components for potential application in ocular drug delivery. For a model system, we used nanodiamond (ND) nanoparticles functionalised with covalently-bonded two-tail (2T) oligoglycine C10(NGly4)2 to make Pickering oil-in-water emulsions, which were stable over three months of storage under neutral pH. We proved the non-toxicity of ND-2T Pickering emulsions, comparable to buffer solution, via an ex vivo bovine corneal permeability and opacity test. The retention of the oil phase in the ND-2T stabilised emulsions on corneal tissue is significantly increased because of the mucoadhesive properties arising from the positively-charged terminal amino groups of 2T. Our formulated emulsions have a surface tension, pH and salt concentration comparable to that of tear fluid. The high retention of the ND-2T-stabilised emulsions on the corneal surface, in combination with their non-toxicity, gives them distinct advantages for ocular drug delivery. The principles of this model system could be applied in the future design of a range of formulations for drug delivery.


Subject(s)
Nanodiamonds , Nanoparticles , Animals , Cattle , Emulsions/chemistry , Drug Delivery Systems , Nanoparticles/chemistry , Surface-Active Agents , Water/chemistry , Particle Size
2.
Langmuir ; 38(44): 13358-13369, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36302079

ABSTRACT

The shape of a liquid-air interface advancing on a heterogeneous surface was studied experimentally, together with the force induced by the pinning of the contact line to surface defects. Different surfaces were considered with circular defects introduced as arrays of cocoa butter patches or small circular holes. These heterogeneous surfaces were submerged in aqueous ethanol solutions while measuring the additional force arising from the deformation of the advancing contact line and characterizing the interface shape and its pinning on the defects. Initially, the submersion force is linear with submerged depth, suggesting a constant defect-induced stiffness. This regime ends when the contact line depins from the defects. A simple scaling is proposed to describe the depinning force and the depinning energy. As the defect separation increases, the interface stiffness is found to increase too, with a weak dependency on the defect radius. This interaction between defects cannot be captured by simple scaling but can be well predicted by a theory considering the interface deformation in the presence of a periodic arrays of holes. Creating a four-phase contact line by including solid defects (cocoa butter) reduced pinning forces. The radius of the defect had a nonlinear effect on the depinning depth. The four-phase contact line resulted in depinning before the defects were fully submerged. These experimental results and the associated theory help to understand quantitatively the extent to which surface heterogeneities can slow down wetting. This in turn paves the way to tailoring the design of heterogeneous surfaces toward desired wetting performances.

SELECTION OF CITATIONS
SEARCH DETAIL
...