Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JHEP Rep ; 4(7): 100508, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35712694

ABSTRACT

Background & Aims: High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods: Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results: At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions: Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary: Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.

2.
Cell Death Dis ; 12(4): 366, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33824326

ABSTRACT

The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.


Subject(s)
Hepatocytes/drug effects , Interleukins/metabolism , Liver/injuries , Peptides/pharmacology , Toll-Like Receptor 5/drug effects , Animals , Cell Line, Tumor , Hepatocytes/metabolism , Liver/drug effects , Liver/metabolism , Mice, Inbred C57BL , Radiation-Protective Agents/pharmacology , Signal Transduction/drug effects , Interleukin-22
3.
NAR Genom Bioinform ; 2(1): lqaa002, 2020 Mar.
Article in English | MEDLINE | ID: mdl-33575552

ABSTRACT

Assessing similarity is highly important for bioinformatics algorithms to determine correlations between biological information. A common problem is that similarity can appear by chance, particularly for low expressed entities. This is especially relevant in single-cell RNA-seq (scRNA-seq) data because read counts are much lower compared to bulk RNA-seq. Recently, a Bayesian correlation scheme that assigns low similarity to genes that have low confidence expression estimates has been proposed to assess similarity for bulk RNA-seq. Our goal is to extend the properties of the Bayesian correlation in scRNA-seq data by considering three ways to compute similarity. First, we compute the similarity of pairs of genes over all cells. Second, we identify specific cell populations and compute the correlation in those populations. Third, we compute the similarity of pairs of genes over all clusters, by considering the total mRNA expression. We demonstrate that Bayesian correlations are more reproducible than Pearson correlations. Compared to Pearson correlations, Bayesian correlations have a smaller dependence on the number of input cells. We show that the Bayesian correlation algorithm assigns high similarity values to genes with a biological relevance in a specific population. We conclude that Bayesian correlation is a robust similarity measure in scRNA-seq data.

4.
Elife ; 82019 02 08.
Article in English | MEDLINE | ID: mdl-30735126

ABSTRACT

Bacterial spillage into a sterile environment following intestinal hollow-organ perforation leads to peritonitis and fulminant sepsis. Outcome of sepsis critically depends on macrophage activation by extracellular ATP-release and associated autocrine signalling via purinergic receptors. ATP-release mechanisms, however, are poorly understood. Here, we show that TLR-2 and -4 agonists trigger ATP-release via Connexin-43 hemichannels in macrophages leading to poor sepsis survival. In humans, Connexin-43 was upregulated on macrophages isolated from the peritoneal cavity in patients with peritonitis but not in healthy controls. Using a murine peritonitis/sepsis model, we identified increased Connexin-43 expression in peritoneal and hepatic macrophages. Conditional Lyz2cre/creGja1flox/flox mice were developed to specifically assess Connexin-43 impact in macrophages. Both macrophage-specific Connexin-43 deletion and pharmacological Connexin-43 blockade were associated with reduced cytokine secretion by macrophages in response to LPS and CLP, ultimately resulting in increased survival. In conclusion, inhibition of autocrine Connexin-43-dependent ATP signalling on macrophages improves sepsis outcome.


Subject(s)
Connexin 43/genetics , Macrophages/metabolism , Sepsis/genetics , Adenosine Triphosphate/genetics , Animals , Autocrine Communication/genetics , Connexin 43/antagonists & inhibitors , Disease Models, Animal , Gene Expression Regulation/genetics , HEK293 Cells , Humans , Lipopolysaccharides/toxicity , Liver/metabolism , Liver/microbiology , Liver/pathology , Macrophage Activation/drug effects , Macrophage Activation/genetics , Macrophages/drug effects , Macrophages/microbiology , Macrophages/pathology , Mice , Peritoneal Cavity/microbiology , Peritoneal Cavity/pathology , Peritonitis/drug therapy , Peritonitis/genetics , Peritonitis/microbiology , Peritonitis/pathology , Probenecid/pharmacology , Sepsis/chemically induced , Sepsis/microbiology , Sepsis/pathology , Toll-Like Receptor 2/genetics , Toll-Like Receptor 4/genetics
5.
Lab Chip ; 18(1): 179-189, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29211089

ABSTRACT

Multicellular spheroids represent a well-established 3D model to study healthy and diseased cells in vitro. The use of conventional 3D cell culture platforms for the generation of multicellular spheroids is limited to cell types that easily self-assemble into spheroids because less adhesive cells fail to form stable aggregates. A high-precision micromoulding technique developed in our laboratory produces deep conical agarose microwell arrays that allow the cultivation of uniform multicellular aggregates, irrespective of the spheroid formation capacity of the cells. Such hydrogel arrays warrant a steady nutrient supply for several weeks, permit live volumetric measurements to monitor cell growth, enable immunohistochemical staining, fluorescence-based microscopy, and facilitate immediate harvesting of cell aggregates. This system also allows co-cultures of two distinct cell types either in direct cell-cell contact or at a distance as the hydrogel permits diffusion of soluble compounds. Notably, we show that co-culture of a breast cancer cell line with bone marrow stromal cells enhances 3D growth of the cancer cells in this system.


Subject(s)
Cell Culture Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Sepharose/chemistry , Spheroids, Cellular/cytology , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Proliferation , Coculture Techniques/instrumentation , Equipment Design , Humans , Hydrogels/chemistry , Mesenchymal Stem Cells/cytology
6.
SLAS Discov ; 22(5): 571-582, 2017 06.
Article in English | MEDLINE | ID: mdl-28345372

ABSTRACT

Oral and intestinal mucositis is a debilitating side effect of radiation treatment. A mouse model of radiation-induced mucositis leads to weight loss and tissue damage, reflecting the human ailment as it responds to keratinocyte growth factor (KGF), the standard-of-care treatment. Cultured intestinal crypt organoids allowed the development of an assay monitoring the effect of treatments of intestinal epithelium to radiation-induced damage. This in vitro assay resembles the mouse model as KGF and roof plate-specific spondin-1 (RSPO1) enhanced crypt organoid recovery following radiation. Screening identified compounds that increased the survival of organoids postradiation. Testing of these compounds revealed that the organoids changed their responses over time. Unbiased transcriptome analysis was performed on crypt organoid cultures at various time points in culture to investigate this adaptive behavior. A number of genes and pathways were found to be modulated over time, providing a rationale for the altered sensitivity of the organoid cultures. This report describes an in vitro assay that reflects aspects of human disease. The assay was used to identify bioactive compounds, which served as probes to interrogate the biology of crypt organoids over prolonged culture. The pathways that are changing over time may offer potential targets for treatment of mucositis.


Subject(s)
Drug Screening Assays, Antitumor/methods , Intestines/drug effects , Organoids/drug effects , Animals , Cell Culture Techniques/methods , Fibroblast Growth Factor 7/metabolism , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Mice , Mice, Inbred C57BL , Organoids/metabolism , Thrombospondins/metabolism , Transcriptome/physiology
7.
Hepatology ; 63(6): 2004-17, 2016 06.
Article in English | MEDLINE | ID: mdl-26853442

ABSTRACT

UNLABELLED: Paracrine signalling mediated by cytokine secretion is essential for liver regeneration after hepatic resection, yet the mechanisms of cellular crosstalk between immune and parenchymal cells are still elusive. Interleukin-22 (IL-22) is released by immune cells and mediates strong hepatoprotective functions. However, it remains unclear whether IL-22 is critical for the crosstalk between liver lymphocytes and parenchymal cells during liver regeneration after partial hepatectomy (PH). Here, we found that plasma levels of IL-22 and its upstream cytokine, IL-23, are highly elevated in patients after major liver resection. In a mouse model of PH, deletion of IL-22 was associated with significantly delayed hepatocellular proliferation and an increase of hepatocellular injury and endoplasmic reticulum stress. Using Rag1(-/-) and Rag2(-/-) γc(-/) (-) mice, we show that the main producers of IL-22 post-PH are conventional natural killer cells and innate lymphoid cells type 1. Extracellular adenosine triphosphate (ATP), a potent danger molecule, is elevated in patients immediately after major liver resection. Antagonism of the P2-type nucleotide receptors, P2X1 and P2Y6, significantly decreased IL-22 secretion ex vivo. In vivo, specific inhibition of P2X1 was associated with decreased IL-22 secretion, elevated liver injury, and impaired liver regeneration. CONCLUSION: This study shows that innate immune cell-derived IL-22 is required for efficient liver regeneration and that secretion of IL-22 in the regenerating liver is modulated by the ATP receptor, P2X1. (Hepatology 2016;63:2004-2017).


Subject(s)
Interleukins/metabolism , Killer Cells, Natural/metabolism , Liver Regeneration , Receptors, Purinergic P2X1/metabolism , Adenosine Triphosphate/metabolism , Animals , Endoplasmic Reticulum Stress , Hepatectomy , Humans , Male , Mice, Inbred C57BL , Interleukin-22
8.
J Cell Sci ; 128(6): 1217-29, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25616894

ABSTRACT

A new cyclic decadepsipeptide was isolated from Chaetosphaeria tulasneorum with potent bioactivity on mammalian and yeast cells. Chemogenomic profiling in S. cerevisiae indicated that the Sec61 translocon complex, the machinery for protein translocation and membrane insertion at the endoplasmic reticulum, is the target. The profiles were similar to those of cyclic heptadepsipeptides of a distinct chemotype (including HUN-7293 and cotransin) that had previously been shown to inhibit cotranslational translocation at the mammalian Sec61 translocon. Unbiased, genome-wide mutagenesis followed by full-genome sequencing in both fungal and mammalian cells identified dominant mutations in Sec61p (yeast) or Sec61α1 (mammals) that conferred resistance. Most, but not all, of these mutations affected inhibition by both chemotypes, despite an absence of structural similarity. Biochemical analysis confirmed inhibition of protein translocation into the endoplasmic reticulum of both co- and post-translationally translocated substrates by both chemotypes, demonstrating a mechanism independent of a translating ribosome. Most interestingly, both chemotypes were found to also inhibit SecYEG, the bacterial Sec61 translocon homolog. We suggest 'decatransin' as the name for this new decadepsipeptide translocation inhibitor.


Subject(s)
Biological Products/pharmacology , Endoplasmic Reticulum/drug effects , Membrane Proteins/metabolism , Protein Transport/drug effects , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Animals , Ascomycota/metabolism , COS Cells , Cells, Cultured , Chlorocebus aethiops , HCT116 Cells , Humans , Membrane Proteins/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Polymorphism, Single Nucleotide/genetics , SEC Translocation Channels , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development
9.
Int J Radiat Biol ; 90(8): 687-99, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24650104

ABSTRACT

PURPOSE: Radioresistance of cancer cells remains a fundamental barrier for maximum efficient radiotherapy. Tumor heterogeneity and the existence of distinct cell subpopulations exhibiting different genotypes and biological behaviors raise difficulties to eradicate all tumorigenic cells. Recent evidence indicates that a distinct population of tumor cells, called cancer stem cells (CSC), is involved in tumor initiation and recurrence and is a putative cause of tumor radioresistance. There is an urgent need to identify the intrinsic molecular mechanisms regulating the generation and maintenance of resistance to radiotherapy, especially within the CSC subset. The chemokine C-X-C motif receptor 4 (CXCR4) has been found to be a prognostic marker in various types of cancer, being involved in chemotaxis, stemness and drug resistance. The interaction of CXCR4 with its ligand, the chemokine C-X-C motif ligand 12 (CXCL12), plays an important role in modulating the tumor microenvironment, angiogenesis and CSC niche. Moreover, the therapeutic inhibition of the CXCR4/CXCL12 signaling pathway is sensitizing the malignant cells to conventional anti-cancer therapy. CONTENT: Within this review we are summarizing the role of the CXCR4/CXCL12 axis in the modulation of CSC properties, the regulation of the tumor microenvironment in response to irradiation, therapy resistance and tumor relapse. CONCLUSION: In light of recent findings, the inhibition of the CXCR4/CXCL12 signaling pathway is a promising therapeutic option to refine radiotherapy.


Subject(s)
Biomarkers, Tumor/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/radiation effects , Radiation Tolerance , Receptors, CXCR4/metabolism , Animals , Humans , Neoplastic Stem Cells/drug effects , Radiation Tolerance/drug effects , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction/drug effects , Signal Transduction/radiation effects
10.
Microbiol Res ; 169(2-3): 107-20, 2014.
Article in English | MEDLINE | ID: mdl-24360837

ABSTRACT

Due to evolutionary conservation of biology, experimental knowledge captured from genetic studies in eukaryotic model organisms provides insight into human cellular pathways and ultimately physiology. Yeast chemogenomic profiling is a powerful approach for annotating cellular responses to small molecules. Using an optimized platform, we provide the relative sensitivities of the heterozygous and homozygous deletion collections for nearly 1800 biologically active compounds. The data quality enables unique insights into pathways that are sensitive and resistant to a given perturbation, as demonstrated with both known and novel compounds. We present examples of novel compounds that inhibit the therapeutically relevant fatty acid synthase and desaturase (Fas1p and Ole1p), and demonstrate how the individual profiles facilitate hypothesis-driven experiments to delineate compound mechanism of action. Importantly, the scale and diversity of tested compounds yields a dataset where the number of modulated pathways approaches saturation. This resource can be used to map novel biological connections, and also identify functions for unannotated genes. We validated hypotheses generated by global two-way hierarchical clustering of profiles for (i) novel compounds with a similar mechanism of action acting upon microtubules or vacuolar ATPases, and (ii) an un-annotated ORF, YIL060w, that plays a role in respiration in the mitochondria. Finally, we identify and characterize background mutations in the widely used yeast deletion collection which should improve the interpretation of past and future screens throughout the community. This comprehensive resource of cellular responses enables the expansion of our understanding of eukaryotic pathway biology.


Subject(s)
Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Antifungal Agents/pharmacology , Biosynthetic Pathways , Drug Resistance, Fungal , Gene Expression Regulation, Fungal , High-Throughput Screening Assays , Molecular Sequence Data , Phylogeny , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...