Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 4498, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908142

ABSTRACT

The androgen receptor (AR) is the master regulator of prostate cancer (PCa) development, and inhibition of AR signalling is the most effective PCa treatment. AR is expressed in PCa cells and also in the PCa-associated stroma, including infiltrating macrophages. Macrophages have a decisive function in PCa initiation and progression, but the role of AR in macrophages remains largely unexplored. Here, we show that AR signalling in the macrophage-like THP-1 cell line supports PCa cell line migration and invasion in culture via increased Triggering Receptor Expressed on Myeloid cells-1 (TREM-1) signalling and expression of its downstream cytokines. Moreover, AR signalling in THP-1 and monocyte-derived macrophages upregulates IL-10 and markers of tissue residency. In conclusion, our data suggest that AR signalling in macrophages may support PCa invasiveness, and blocking this process may constitute one mechanism of anti-androgen therapy.


Subject(s)
Macrophages/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Aged , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Anilides/pharmacology , Anilides/therapeutic use , Biopsy , Blood Buffy Coat/cytology , Case-Control Studies , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/immunology , Chemotherapy, Adjuvant , Coculture Techniques , Disease-Free Survival , Humans , Macrophages/immunology , Male , Middle Aged , Neoadjuvant Therapy , Neoplasm Invasiveness/immunology , Neoplasm Invasiveness/prevention & control , Nitriles/pharmacology , Nitriles/therapeutic use , Progression-Free Survival , Prostate/pathology , Prostate/surgery , Prostatectomy , Prostatic Neoplasms/immunology , Prostatic Neoplasms/mortality , Prostatic Neoplasms/therapy , Robotic Surgical Procedures , Signal Transduction/immunology , Single-Cell Analysis , THP-1 Cells , Tosyl Compounds/pharmacology , Tosyl Compounds/therapeutic use
2.
Mol Oncol ; 12(8): 1308-1323, 2018 08.
Article in English | MEDLINE | ID: mdl-29808619

ABSTRACT

Fibroblasts are abundantly present in the prostate tumor microenvironment (TME), including cancer-associated fibroblasts (CAFs) which play a key role in cancer development. Androgen receptor (AR) signaling is the main driver of prostate cancer (PCa) progression, and stromal cells in the TME also express AR. High-grade tumor and poor clinical outcome are associated with low AR expression in the TME, which suggests a protective role of AR signaling in the stroma against PCa development. However, the mechanism of this relation is not clear. In this study, we isolated AR-expressing CAF-like cells. Testosterone (R1881) exposure did not affect CAF-like cell morphology, proliferation, or motility. PCa cell growth was not affected by culturing in medium from R1881-exposed CAF-like cells; however, migration of PCa cells was inhibited. AR chromatin immune precipitation sequencing (ChIP-seq) was performed and motif search suggested that AR in CAF-like cells bound the chromatin through AP-1-elements upon R1881 exposure, inducing enhancer-mediated AR chromatin interactions. The vast majority of chromatin binding sites in CAF-like cells were unique and not shared with AR sites observed in PCa cell lines or tumors. AR signaling in CAF-like cells decreased expression of multiple cytokines; most notably CCL2 and CXCL8 and both cytokines increased migration of PCa cells. These results suggest direct paracrine regulation of PCa cell migration by CAFs through AR signaling.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Cell Movement , Chemokine CCL2/metabolism , Interleukin-8/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/metabolism , Signal Transduction , Aged , Cancer-Associated Fibroblasts/metabolism , Chemokine CCL2/analysis , Humans , Interleukin-8/analysis , Male , Middle Aged , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/metabolism , Receptors, Androgen/analysis
3.
Oncotarget ; 8(55): 93867-93877, 2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29212195

ABSTRACT

Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1-/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1-/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-ß1 were detected in Hi-MycRAG1-/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

5.
Leuk Lymphoma ; 54(9): 2008-15, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23339450

ABSTRACT

The aim of this study was to assess the immunogenic potential of irradiated lymphoma cells in vivo and determine whether immunogenicity can be enhanced by modulation of the host immune system. Syngeneic murine lymphoma models irradiated ex vivo were used as an orthotopic cellular vaccination prior to challenge with viable tumor cells. We demonstrate that irradiated lymphoma cells are poorly immunogenic and that protective anti-tumor CD8 T-cell responses require the addition of immunostimulatory monoclonal antibody as an immune adjuvant, and increased frequency of antigen exposure by multiple vaccinations. Furthermore, we show the potential importance of macrophages in regulating immunogenicity of irradiated lymphoma cells and demonstrate that depletion of macrophages using clodronate-encapsulated liposomes considerably enhances primary vaccination efficacy in the presence of adjuvant anti-CD40 antibody. Our results demonstrate that the immunogenic potential of poorly immunogenic lymphoma cells dying after radiation therapy can be improved by modulation of the host immune system.


Subject(s)
Immunomodulation , Lymphoma/immunology , Macrophages/immunology , Adjuvants, Immunologic , Animals , Antibodies, Monoclonal/immunology , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Cell Death/radiation effects , Cell Line, Tumor , Humans , Immunomodulation/radiation effects , Immunotherapy , Lymphoma/therapy , Mice , Neoadjuvant Therapy , Radiation
6.
Blood ; 121(2): 251-9, 2013 Jan 10.
Article in English | MEDLINE | ID: mdl-23086756

ABSTRACT

Passive immunotherapy with monoclonal antibodies has improved outcome for patients with B-cell malignancies, although many still relapse and little progress has been made with T-cell malignancies. Novel treatment approaches are clearly required in this disease setting. There has been much recent interest in developing therapeutic approaches to enhance antitumor immune responses using novel immunomodulatory agents in combination with standard of care treatments. Here we report that intravenous administration of the Toll-like receptor 7 (TLR7) agonist, R848 in combination with radiation therapy (RT), leads to the longstanding clearance of tumor in T- and B-cell lymphoma bearing mice. In combination, TLR7/RT therapy leads to the expansion of tumor antigen-specific CD8(+) T cells and improved survival. Furthermore, those mice that achieve long-term clearance of tumor after TLR7/RT therapy are protected from subsequent tumor rechallenge by the generation of a tumor-specific memory immune response. Our findings demonstrate the potential for enhancing the efficacy of conventional cytotoxic anticancer therapy through combination with a systemically administered TLR7 agonist to improve antitumor immune responses and provide durable remissions.


Subject(s)
Antineoplastic Agents/administration & dosage , Imidazoles/administration & dosage , Lymphoma/immunology , Lymphoma/radiotherapy , Membrane Glycoproteins/agonists , Toll-Like Receptor 7/agonists , Animals , Antineoplastic Agents/therapeutic use , Combined Modality Therapy , Disease Models, Animal , Imidazoles/therapeutic use , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphoma/drug therapy , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology
7.
Biochem Biophys Res Commun ; 325(3): 952-60, 2004 Dec 17.
Article in English | MEDLINE | ID: mdl-15541382

ABSTRACT

MUC2, the major mucin in the intestine, is expressed early during development and shows an altered expression pattern in intestinal bowel diseases. However, the mechanisms responsible for MUC2 expression in the intestine during these events are largely unknown. Having found putative GATA binding sites in the murine Muc2 promoter and that GATA-4 is expressed in Muc2-expressing goblet cells of the mouse small intestine, we undertook to study its regulation by this transcription factor. A panel of deletion mutants made in pGL3 vector and covering 2.2kb of the promoter were used to transfect the murine CMT-93 colorectal cancer cell line. The role of GATA-4 on Muc2 gene regulation was investigated by RT-PCR and co-transfections in the presence of expression vectors encoding either wild-type or mutated GATA-4 or by mutating the GATA-4 site identified within Muc2 promoter. Four GATA-4 cis-elements were identified in the promoter by EMSA and Muc2 promoter was efficiently activated when GATA-4 was overexpressed in the cells with a loss of transactivation when those sites were either mutated or a mutated form of GATA-4 was used. Altogether, these results identify Muc2, a goblet cell marker, as a new target gene of GATA-4 and point out an important role for this factor in Muc2 expression in the intestine.


Subject(s)
DNA-Binding Proteins/metabolism , Intestinal Mucosa/metabolism , Mucins/metabolism , Transcription Factors/metabolism , Animals , Cell Line, Tumor , GATA4 Transcription Factor , Gene Expression Regulation , In Vitro Techniques , Mice , Mucin-2 , Mutagenesis, Site-Directed , Recombinant Proteins/metabolism , Structure-Activity Relationship , Transcription, Genetic , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...