Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-22273802

ABSTRACT

ImportanceDrug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. ObjectivesTo test if different statins differ in their ability to exert protective effects based on molecular computational predictions and electronic medical record analysis. Main Outcomes and MeasuresA Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2, with a total of 2,436 drugs investigated. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. ResultsSimvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Conclusions and RelevanceDifferent statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-446968

ABSTRACT

Many patients infected with coronaviruses, such as SARS-CoV-2 and NL63 that use ACE2 receptors to infect cells, exhibit gastrointestinal symptoms and viral proteins are found in the human gastrointestinal tract, yet little is known about the inflammatory and pathological effects of coronavirus infection on the human intestine. Here, we used a human intestine-on-a-chip (Intestine Chip) microfluidic culture device lined by patient organoid-derived intestinal epithelium interfaced with human vascular endothelium to study host cellular and inflammatory responses to infection with NL63 coronavirus. These organoid-derived intestinal epithelial cells dramatically increased their ACE2 protein levels when cultured under flow in the presence of peristalsis-like mechanical deformations in the Intestine Chips compared to when cultured statically as organoids or in Transwell inserts. Infection of the intestinal epithelium with NL63 on-chip led to inflammation of the endothelium as demonstrated by loss of barrier function, increased cytokine production, and recruitment of circulating peripheral blood mononuclear cells (PMBCs). Treatment of NL63 infected chips with the approved protease inhibitor drug, nafamostat, inhibited viral entry and resulted in a reduction in both viral load and cytokine secretion, whereas remdesivir, one of the few drugs approved for COVID19 patients, was not found to be effective and it also was toxic to the endothelium. This model of intestinal infection was also used to test the effects of other drugs that have been proposed for potential repurposing against SARS-CoV-2. Taken together, these data suggest that the human Intestine Chip might be useful as a human preclinical model for studying coronavirus related pathology as well as for testing of potential anti-viral or anti-inflammatory therapeutics.

3.
Preprint in English | bioRxiv | ID: ppbiorxiv-441498

ABSTRACT

Mechanical forces associated with breathing play a fundamental role in lung development and disease but the molecular pathways remain largely unknown. Here, we used a mechanically actuatable Human Lung Alveolus Chip that recapitulates human lung alveolar type I and type II cell differentiation, alveolar-capillary interface formation, and genome-wide gene expression profiles characteristic of the distal lung to investigate the role of physical forces associated with cyclic breathing motions in lung innate immune responses to viral infection. When the mechanically active Alveolus Chips are infected with the influenza H3N2 virus, a cascade of host responses is elicited on-chip, including increased production of cytokines and expression of inflammation-associated genes in pulmonary epithelial and endothelial cells, resulting in enhanced recruitment of circulating immune cells as occurs during viral infection in vivo. Surprisingly, studies carried out in parallel with static chips revealed that physiological breathing motions suppress viral replication by activating protective innate immune responses in epithelial and endothelial cells. This is mediated at least in part through upregulation of S100 calcium-binding protein A7 (S100A7), which binds to the Receptor for Advanced Glycation End Products (RAGE), an inflammatory mediator that is most highly expressed in the lung alveolus in vivo. This mechano-immunological control mechanism is further supported by the finding that existing RAGE inhibitor drugs can suppress the production of inflammatory cytokines in response to influenza virus infection in this model. S100A7-RAGE interactions and modulation of mechanical ventilation parameters could therefore serve as new targets for therapeutic intervention in patients infected with influenza and other potential pandemic viruses that cause life-threatening lung inflammation.

4.
Preprint in English | bioRxiv | ID: ppbiorxiv-039917

ABSTRACT

The rising threat of pandemic viruses, such as SARS-CoV-2, requires development of new preclinical discovery platforms that can more rapidly identify therapeutics that are active in vitro and also translate in vivo. Here we show that human organ-on-a-chip (Organ Chip) microfluidic culture devices lined by highly differentiated human primary lung airway epithelium and endothelium can be used to model virus entry, replication, strain-dependent virulence, host cytokine production, and recruitment of circulating immune cells in response to infection by respiratory viruses with great pandemic potential. We provide a first demonstration of drug repurposing by using oseltamivir in influenza A virus-infected organ chip cultures and show that co-administration of the approved anticoagulant drug, nafamostat, can double oseltamivirs therapeutic time window. With the emergence of the COVID-19 pandemic, the Airway Chips were used to assess the inhibitory activities of approved drugs that showed inhibition in traditional cell culture assays only to find that most failed when tested in the Organ Chip platform. When administered in human Airway Chips under flow at a clinically relevant dose, one drug - amodiaquine - significantly inhibited infection by a pseudotyped SARS-CoV-2 virus. Proof of concept was provided by showing that amodiaquine and its active metabolite (desethylamodiaquine) also significantly reduce viral load in both direct infection and animal-to-animal transmission models of native SARS-CoV-2 infection in hamsters. These data highlight the value of Organ Chip technology as a more stringent and physiologically relevant platform for drug repurposing, and suggest that amodiaquine should be considered for future clinical testing.

SELECTION OF CITATIONS
SEARCH DETAIL
...