Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Med Chem ; 63(23): 14594-14608, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33216547

ABSTRACT

The paracaspase MALT1 has gained increasing interest as a target for the treatment of subsets of lymphomas as well as autoimmune diseases, and there is a need for suitable compounds to explore the therapeutic potential of this target. Here, we report the optimization of the in vivo potency of pyrazolopyrimidines, a class of highly selective allosteric MALT1 inhibitors. High doses of the initial lead compound led to tumor stasis in an activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL) xenograft model, but this compound suffered from a short in vivo half-life and suboptimal potency in whole blood. Guided by metabolism studies, we identified compounds with reduced metabolic clearance and increased in vivo half-life. In the second optimization step, masking one of the hydrogen-bond donors of the central urea moiety through an intramolecular interaction led to improved potency in whole blood. This was associated with improved in vivo potency in a mechanistic model of B cell activation. The optimized compound led to tumor regression in a CARD11 mutant ABC-DLBCL lymphoma xenograft model.


Subject(s)
Blood/metabolism , Caspase Inhibitors/therapeutic use , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Urea/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Caspase Inhibitors/chemical synthesis , Caspase Inhibitors/metabolism , Caspase Inhibitors/pharmacokinetics , Cell Line, Tumor , Female , Half-Life , Humans , Mice, Inbred BALB C , Mice, SCID , Microsomes, Liver/metabolism , Neoplasms/drug therapy , Pyrazoles/chemical synthesis , Pyrazoles/metabolism , Pyrazoles/pharmacokinetics , Pyrimidines/chemical synthesis , Pyrimidines/metabolism , Pyrimidines/pharmacokinetics , Rats, Sprague-Dawley , Sheep , Urea/chemical synthesis , Urea/metabolism , Urea/pharmacokinetics , Xenograft Model Antitumor Assays
2.
J Med Chem ; 63(23): 14576-14593, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33252239

ABSTRACT

MALT1 plays a central role in immune cell activation by transducing NF-κB signaling, and its proteolytic activity represents a key node for therapeutic intervention. Two cycles of scaffold morphing of a high-throughput biochemical screening hit resulted in the discovery of MLT-231, which enabled the successful pharmacological validation of MALT1 allosteric inhibition in preclinical models of humoral immune responses and B-cell lymphomas. Herein, we report the structural activity relationships (SARs) and analysis of the physicochemical properties of a pyrazolopyrimidine-derived compound series. In human T-cells and B-cell lymphoma lines, MLT-231 potently and selectively inhibits the proteolytic activity of MALT1 in NF-κB-dependent assays. Both in vitro and in vivo profiling of MLT-231 support further optimization of this in vivo tool compound toward preclinical characterization.


Subject(s)
Caspase Inhibitors/therapeutic use , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Neoplasms/drug therapy , Urea/analogs & derivatives , Urea/therapeutic use , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Caspase Inhibitors/chemical synthesis , Caspase Inhibitors/pharmacology , Drug Discovery , Female , Humans , Immunity, Humoral/drug effects , Male , Mice, Inbred BALB C , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrazoles/therapeutic use , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Rats, Sprague-Dawley , Structure-Activity Relationship , T-Lymphocytes/drug effects , Urea/pharmacology , Xenograft Model Antitumor Assays
3.
Blood ; 133(13): 1507-1516, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30692123

ABSTRACT

A large unmet medical need exists for safer antithrombotic drugs because all currently approved anticoagulant agents interfere with hemostasis, leading to an increased risk of bleeding. Genetic and pharmacologic evidence in humans and animals suggests that reducing factor XI (FXI) levels has the potential to effectively prevent and treat thrombosis with a minimal risk of bleeding. We generated a fully human antibody (MAA868) that binds the catalytic domain of both FXI (zymogen) and activated FXI. Our structural studies show that MAA868 traps FXI and activated FXI in an inactive, zymogen-like conformation, explaining its equally high binding affinity for both forms of the enzyme. This binding mode allows the enzyme to be neutralized before entering the coagulation process, revealing a particularly attractive anticoagulant profile of the antibody. MAA868 exhibited favorable anticoagulant activity in mice with a dose-dependent protection from carotid occlusion in a ferric chloride-induced thrombosis model. MAA868 also caused robust and sustained anticoagulant activity in cynomolgus monkeys as assessed by activated partial thromboplastin time without any evidence of bleeding. Based on these preclinical findings, we conducted a first-in-human study in healthy subjects and showed that single subcutaneous doses of MAA868 were safe and well tolerated. MAA868 resulted in dose- and time-dependent robust and sustained prolongation of activated partial thromboplastin time and FXI suppression for up to 4 weeks or longer, supporting further clinical investigation as a potential once-monthly subcutaneous anticoagulant therapy.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Anticoagulants/therapeutic use , Blood Coagulation/drug effects , Factor XI/antagonists & inhibitors , Thrombosis/drug therapy , Adolescent , Adult , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Anticoagulants/pharmacology , Female , Humans , Immunoglobulin G/pharmacology , Immunoglobulin G/therapeutic use , Macaca fascicularis , Male , Mice, Inbred C57BL , Middle Aged , Molecular Docking Simulation , Thrombosis/blood , Young Adult
4.
Bioorg Med Chem Lett ; 28(12): 2153-2158, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29759726

ABSTRACT

Starting from a weak screening hit, potent and selective inhibitors of the MALT1 protease function were elaborated. Advanced compounds displayed high potency in biochemical and cellular assays. Compounds showed activity in a mechanistic Jurkat T cell activation assay as well as in the B-cell lymphoma line OCI-Ly3, which suggests potential use of MALT1 inhibitors in the treatment of autoimmune diseases as well as B-cell lymphomas with a dysregulated NF-κB pathway. Initially, rat pharmacokinetic properties of this compound series were dominated by very high clearance which could be linked to amide cleavage. Using a rat hepatocyte assay a good in vitro-in vivo correlation could be established which led to the identification of compounds with improved PK properties.


Subject(s)
Antineoplastic Agents/pharmacology , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/antagonists & inhibitors , Piperidines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Humans , Jurkat Cells , Microsomes/drug effects , Molecular Structure , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein/metabolism , Piperidines/chemical synthesis , Piperidines/chemistry , Proteolysis/drug effects , Rats , Structure-Activity Relationship
5.
ChemMedChem ; 11(8): 862-9, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26822284

ABSTRACT

Fragment-based drug discovery has shown promise as an approach for challenging targets such as protein-protein interfaces. We developed and applied an activity-based fragment screen against dimeric Kaposi's sarcoma-associated herpesvirus protease (KSHV Pr) using an optimized fluorogenic substrate. Dose-response determination was performed as a confirmation screen, and NMR spectroscopy was used to map fragment inhibitor binding to KSHV Pr. Kinetic assays demonstrated that several initial hits also inhibit human cytomegalovirus protease (HCMV Pr). Binding of these hits to HCMV Pr was also confirmed by NMR spectroscopy. Despite the use of a target-agnostic fragment library, more than 80 % of confirmed hits disrupted dimerization and bound to a previously reported pocket at the dimer interface of KSHV Pr, not to the active site. One class of fragments, an aminothiazole scaffold, was further explored using commercially available analogues. These compounds demonstrated greater than 100-fold improvement of inhibition. This study illustrates the power of fragment-based screening for these challenging enzymatic targets and provides an example of the potential druggability of pockets at protein-protein interfaces.


Subject(s)
Herpesvirus 8, Human/enzymology , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Serine Endopeptidases/metabolism , Dose-Response Relationship, Drug , High-Throughput Screening Assays , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Protease Inhibitors/chemical synthesis , Protease Inhibitors/chemistry , Protein Binding/drug effects , Structure-Activity Relationship
6.
Nat Commun ; 6: 8777, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26525107

ABSTRACT

Antigen receptor signalling activates the canonical NF-κB pathway via the CARD11/BCL10/MALT1 (CBM) signalosome involving key, yet ill-defined roles for linear ubiquitination. The paracaspase MALT1 cleaves and removes negative checkpoint proteins, amplifying lymphocyte responses in NF-κB activation and in B-cell lymphoma subtypes. To identify new human MALT1 substrates, we compare B cells from the only known living MALT1(mut/mut) patient with healthy MALT1(+/mut) family members using 10-plex Tandem Mass Tag TAILS N-terminal peptide proteomics. We identify HOIL1 of the linear ubiquitin chain assembly complex as a novel MALT1 substrate. We show linear ubiquitination at B-cell receptor microclusters and signalosomes. Late in the NF-κB activation cycle HOIL1 cleavage transiently reduces linear ubiquitination, including of NEMO and RIP1, dampening NF-κB activation and preventing reactivation. By regulating linear ubiquitination, MALT1 is both a positive and negative pleiotropic regulator of the human canonical NF-κB pathway-first promoting activation via the CBM--then triggering HOIL1-dependent negative-feedback termination, preventing reactivation.


Subject(s)
Caspases/genetics , Immunologic Deficiency Syndromes/genetics , Lymphocytes/immunology , NF-kappa B/metabolism , Neoplasm Proteins/genetics , Ubiquitin-Protein Ligases/metabolism , Adolescent , Adult , Animals , Antigen-Presenting Cells , B-Lymphocytes/immunology , Caspases/immunology , Caspases/metabolism , Family , Female , Fluorescent Antibody Technique , GTPase-Activating Proteins/metabolism , Gene Knock-In Techniques , Humans , I-kappa B Kinase/metabolism , Immunoblotting , Immunologic Deficiency Syndromes/immunology , Immunoprecipitation , In Vitro Techniques , Intracellular Signaling Peptides and Proteins/metabolism , Leukocytes, Mononuclear , Male , Mass Spectrometry , Mice , Microscopy, Confocal , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Mutation , NF-kappa B/immunology , Neoplasm Proteins/immunology , Neoplasm Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Palatine Tonsil , Proteomics , RNA-Binding Proteins/metabolism , T-Lymphocytes/immunology , Tandem Mass Spectrometry , Transcription Factors , Ubiquitination/immunology
7.
Bioorg Med Chem Lett ; 25(3): 438-43, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25571794

ABSTRACT

Adenoviral infections are associated with a wide range of acute diseases, among which ocular viral conjunctivitis (EKC) and disseminated disease in immunocompromised patients. To date, no approved specific anti-adenoviral drug is available, but there is a growing need for an effective treatment of such infections. The adenoviral protease, adenain, plays a crucial role for the viral lifecycle and thus represents an attractive therapeutic target. Structure-guided design with the objective to depeptidize tetrapeptide nitrile 1 led to the novel chemotype 2. Optimization of scaffold 2 resulted in picomolar adenain inhibitors 3a and 3b. In addition, a complementary series of irreversible vinyl sulfone containing inhibitors were rationally designed, prepared and evaluated against adenoviral protease. High resolution X-ray co-crystal structures of representatives of each series proves the successful design of these inhibitors and provides an excellent basis for future medicinal chemistry optimization of these compounds.


Subject(s)
Adenoviridae/enzymology , Antiviral Agents/chemistry , Cysteine Endopeptidases/chemistry , Drug Design , Protease Inhibitors/chemistry , Viral Proteins/antagonists & inhibitors , Adenoviridae/drug effects , Antiviral Agents/metabolism , Antiviral Agents/toxicity , Binding Sites , Crystallography, X-Ray , Cysteine Endopeptidases/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/toxicity , Protein Binding , Protein Structure, Tertiary , Structure-Activity Relationship , Viral Proteins/metabolism
8.
ACS Med Chem Lett ; 5(8): 937-41, 2014 Aug 14.
Article in English | MEDLINE | ID: mdl-25147618

ABSTRACT

The cysteine protease adenain is the essential protease of adenovirus and, as such, represents a promising target for the treatment of ocular and other adenoviral infections. Through a concise two-pronged hit discovery approach we identified tetrapeptide nitrile 1 and pyrimidine nitrile 2 as complementary starting points for adenain inhibition. These hits enabled the first high-resolution X-ray cocrystal structures of adenain with inhibitors bound and revealed the binding mode of 1 and 2. The screening hits were optimized by a structure-guided medicinal chemistry strategy into low nanomolar drug-like inhibitors of adenain.

9.
J Mol Biol ; 419(1-2): 4-21, 2012 May 25.
Article in English | MEDLINE | ID: mdl-22366302

ABSTRACT

The formation of the CBM (CARD11-BCL10-MALT1) complex is pivotal for antigen-receptor-mediated activation of the transcription factor NF-κB. Signaling is dependent on MALT1 (mucosa-associated lymphoid tissue lymphoma translocation protein 1), which not only acts as a scaffolding protein but also possesses proteolytic activity mediated by its caspase-like domain. It remained unclear how the CBM activates MALT1. Here, we provide biochemical and structural evidence that MALT1 activation is dependent on its dimerization and show that mutations at the dimer interface abrogate activity in cells. The unliganded protease presents itself in a dimeric yet inactive state and undergoes substantial conformational changes upon substrate binding. These structural changes also affect the conformation of the C-terminal Ig-like domain, a domain that is required for MALT1 activity. Binding to the active site is coupled to a relative movement of caspase and Ig-like domains. MALT1 binding partners thus may have the potential of tuning MALT1 protease activity without binding directly to the caspase domain.


Subject(s)
Caspases/chemistry , Caspases/metabolism , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , B-Cell CLL-Lymphoma 10 Protein , Catalytic Domain , Cells, Cultured , Dimerization , Enzyme Activation , HEK293 Cells , Humans , Ligands , Mice , Models, Molecular , Molecular Sequence Data , Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Protein Structure, Tertiary , Receptors, Antigen/chemistry , Receptors, Antigen/genetics , Receptors, Antigen/metabolism , Signal Transduction , Structure-Activity Relationship
10.
Bioconjug Chem ; 21(10): 1836-41, 2010 Oct 20.
Article in English | MEDLINE | ID: mdl-20806901

ABSTRACT

Collections of chemical compounds, individually attached to unique DNA fragments serving as amplifiable identification bar codes, are generally referred to as "DNA-encoded chemical libraries". Such libraries can be used for the de novo isolation of binding molecules against target proteins of interest. Here, we describe the synthesis and use of a DNA-encoded library based on benzamidine analogues, which allowed the isolation of a trypsin inhibitor with an IC(50) value of 3.0 nM, thus representing a >10 000-fold potency improvement compared to the parental compound. The novel trypsin inhibitor displayed an excellent selectivity toward other serine proteases. This study indicates that DNA-encoded libraries can be used for the facile "affinity maturation" of suboptimal binding compounds, thus facilitating drug development.


Subject(s)
DNA/chemistry , Drug Evaluation, Preclinical/methods , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Trypsin Inhibitors/chemistry , Trypsin Inhibitors/pharmacology , Trypsin/metabolism , Base Sequence , Benzamidines/chemistry , Benzamidines/pharmacology , DNA/genetics , Inhibitory Concentration 50
11.
ChemMedChem ; 5(4): 584-90, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20229565

ABSTRACT

Bcl-xL is an antiapoptotic member of the Bcl-2 protein family and an attractive target for the development of anticancer agents. Here we describe the isolation of binders to Bcl-xL from a DNA-encoded chemical library using affinity-capture selections and massively parallel high-throughput sequencing of >30,000 sequence tags of library members. The most potent binder identified, compound 19/93 [(R)-3-(amido indomethacin)-4-(naphthalen-1-yl)butanoic acid], bound to Bcl-xL with a dissociation constant (K(d)) of 930 nM and was able to compete with a Bak-derived BH3 peptide, an antagonist of Bcl-xL function.


Subject(s)
Antineoplastic Agents/chemistry , DNA/chemistry , bcl-X Protein/antagonists & inhibitors , Antineoplastic Agents/toxicity , Apoptosis , Cell Line, Tumor , Humans , Sequence Analysis, DNA , Small Molecule Libraries , bcl-X Protein/metabolism
12.
Proc Natl Acad Sci U S A ; 105(46): 17670-5, 2008 Nov 18.
Article in English | MEDLINE | ID: mdl-19001273

ABSTRACT

DNA encoding facilitates the construction and screening of large chemical libraries. Here, we describe general strategies for the stepwise coupling of coding DNA fragments to nascent organic molecules throughout individual reaction steps as well as the first implementation of high-throughput sequencing for the identification and relative quantification of the library members. The methodology was exemplified in the construction of a DNA-encoded chemical library containing 4,000 compounds and in the discovery of binders to streptavidin, matrix metalloproteinase 3, and polyclonal human IgG.


Subject(s)
DNA/analysis , Sequence Analysis, DNA/methods , Small Molecule Libraries/chemistry , Fluorescence Polarization , Humans , Immunoglobulin G/metabolism , Kinetics , Matrix Metalloproteinase 3/metabolism , Streptavidin/metabolism
14.
Bioconjug Chem ; 19(3): 778-85, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18254582

ABSTRACT

Encoded self-assembling chemical (ESAC) libraries are characterized by the covalent display of chemical moieties at the extremity of self-assembling oligonucleotides carrying a unique DNA sequence for the identification of the corresponding chemical moiety. We have used ESAC library technology in a two-step selection procedure for the identification of novel inhibitors of stromelysin-1 (MMP-3), a matrix metalloproteinase involved in both physiological and pathological tissue remodeling processes, yielding novel inhibitors with micromolar potency.


Subject(s)
DNA/genetics , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase Inhibitors , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Carbonic Anhydrase II/antagonists & inhibitors , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Carboxypeptidases A/antagonists & inhibitors , Catalysis , Chromatography, Affinity , Cloning, Molecular , Drug Design , Gene Library , Humans , Indicators and Reagents , Magnetic Resonance Spectroscopy , Matrix Metalloproteinase 3/chemistry , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Protease Inhibitors/chemistry , Protein Binding , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Electrospray Ionization , Urokinase-Type Plasminogen Activator/antagonists & inhibitors
15.
Drug Discov Today ; 12(11-12): 465-71, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17532531

ABSTRACT

The isolation of specific binding molecules is a central problem in the drug discovery process and might be useful for the elucidation of the biological function of proteins identified in genome and proteome research. Libraries of organic molecules, conjugated covalently to DNA tags that serve as identification bar codes, have been proposed recently as a way to identify ligands of target proteins of choice efficiently. Here, we analyze the different strategies for constructing DNA-encoded chemical libraries, and the potential and challenges of this promising technology.


Subject(s)
DNA/genetics , Gene Library , Animals , Drug Design , Humans , Peptide Library
17.
J Biotechnol ; 126(4): 568-81, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-16860425

ABSTRACT

The discovery and development of novel drugs for the multitude of targets originating from functional genomic research is a challenging task. While antibodies can nowadays be raised against virtually any given target using phage-display methodologies, a similar "selection/amplification" approach for the facile discovery of low-molecular weight compounds capable of specific binding to protein targets of choice has so far been lacking. The development of DNA-encoded chemical libraries, combined with suitable selection and high-throughput sequencing strategies, holds promises to fill this gap. Here, we review the latest developments in the field of DNA-encoded chemical libraries, commenting on the challenges and opportunities for the different experimental strategies in this rapidly evolving research area, which may gain importance for the future drug discovery process.


Subject(s)
DNA/chemistry , DNA/genetics , Gene Library , Peptide Library , Animals , Combinatorial Chemistry Techniques , Drug Design , Humans , Templates, Genetic
18.
Bioconjug Chem ; 17(2): 366-70, 2006.
Article in English | MEDLINE | ID: mdl-16536467

ABSTRACT

DNA-encoded libraries of small organic molecules facilitate the construction of large, encoded self-assembling chemical libraries for the identification of high-affinity binders to protein targets. We have constructed a library of 477 chemical compounds, coupled to 48mer-oligonucleotides, each containing a unique six-base sequence serving as "bar-code" for the identification of the chemical moiety. The functionality of the library was confirmed by selection and amplification of both high- and low-affinity binding molecules specific to streptavidin.


Subject(s)
DNA/chemistry , Gene Library , Streptavidin/chemistry , Animals , Humans , Molecular Structure , Protein Binding , Streptavidin/metabolism
19.
Chem Biol ; 13(2): 225-31, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16492570

ABSTRACT

The simultaneous interaction of the binding moieties of a bidentate ligand on adjacent epitopes of a target protein represents an attractive avenue for the discovery of specific, high-affinity binders. We used short DNA fragments in heteroduplex format to scaffold pairs of binding molecules with defined spatial arrangements. Iminobiotin derivates were coupled either via bifunctional linkers or by using various oligonucleotides, thus allowing monovalent or bivalent binding to streptavidin. We determined the binding affinities of the synthesized constructs in solution. We also investigated the efficiency of recovery of superior bidentate ligands in affinity capture experiments, by using both radioactive counts and DNA microarrays as readouts. This analysis confirmed the suitability of the DNA heteroduplex as a scaffold for the identification of synergistic pairs of binding moieties, capable of a high-affinity interaction with protein targets by virtue of the chelate effect.


Subject(s)
Chelating Agents/chemistry , Oligonucleotides/chemistry , Pharmaceutical Preparations/chemistry , Proteins/chemistry , Base Sequence , Calorimetry , DNA Primers , Oligonucleotide Array Sequence Analysis
20.
Nat Biotechnol ; 22(5): 568-74, 2004 May.
Article in English | MEDLINE | ID: mdl-15097996

ABSTRACT

The isolation of molecules capable of high-affinity and specific binding to biological targets is a central problem in chemistry, biology and pharmaceutical sciences. Here we describe the use of encoded self-assembling chemical (ESAC) libraries for the facile identification of molecules that bind macromolecular targets. ESAC technology uses libraries of organic molecules linked to individual oligonucleotides that mediate the self-assembly of the library and provide a code associated with each organic molecule. After panning ESAC libraries on the biomolecular target of interest, the 'binding code' of the selected compounds can be 'decoded' by a number of experimental techniques (e.g., hybridization on oligonucleotide microarrays). The potential of this technology was demonstrated by the affinity maturation (>40-fold) of binding molecules to human serum albumin and bovine carbonic anhydrase, leading to binders with dissociation constants in the nanomolar range.


Subject(s)
Albumins/metabolism , Carbonic Anhydrases/metabolism , Oligonucleotides/metabolism , Animals , Base Sequence , Cattle , DNA Primers , Humans , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...