Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 122(33): 6655-6662, 2018 Aug 23.
Article in English | MEDLINE | ID: mdl-29914263

ABSTRACT

The temperature dependent kinetics of Ni+ + O3 and of NiO+ + CH4/CD4 are measured from 300 to 600 K using a selected-ion flow tube apparatus. Together, these reactions comprise a catalytic cycle converting CH4 to CH3OH. The reaction of Ni+ + O3 proceeds at the collisional limit, faster than previously reported at 300 K. The NiO+ product reacts further with O3, also at the collisional limit, yielding both higher oxides (up to NiO5+ is observed) as well as undergoing an apparent reduction back to Ni+. This apparent reduction channel is due to the oxidation channel yielding NiO2+* with sufficient energy to dissociate. 4NiO+ + CH4 (CD4) (whereas 4NiO+ refers to the quartet state of NiO+) proceeds with a rate constant of (2.6 ± 0.4) × 10-10 cm3 s-1 [(1.8 ± 0.5) × 10-10 cm3 s-1] at 300 K and a temperature dependence of ∼ T-0.7±0.3 (∼ T-1.1±0.4), producing only the 2Ni+ + 1CH3OH channel up to 600 K. Statistical modeling of the reaction based on calculated stationary points along the reaction coordinate reproduces the experimental rate constant as a function of temperature but underpredicts the kinetic isotope shift. The modeling was found to better represent the data when the crossing from quartet to doublet surface was incomplete, suggesting a possible kinetic effect in crossing from quartet to doublet surfaces. Additionally, the modeling predicts a competing 3NiOH+ + 2CH3 channel to become increasingly important at higher temperatures.

2.
J Chem Phys ; 148(8): 084305, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29495785

ABSTRACT

We have measured reaction rate constants for CO+ and CO2+ reacting with N and O atoms using a selected ion flow tube apparatus equipped with a microwave discharge atom source. Experimental work was supplemented by molecular structure calculations. Calculated pathways show the sensitivity of kinetic barriers to theoretical methods and imply that high-level ab initio methods are required for accurate energetics. We report room-temperature rate constants of 1.0 ± 0.4 × 10-11 cm3 s-1 and 4.0 ± 1.6 × 10-11 cm3 s-1 for the reactions of CO+ with N and O atoms, respectively, and 8.0 ± 3.0 × 10-12 cm3 s-1 and 2.0 ± 0.8 × 10-11 cm3 s-1 for the reactions of CO2+ with N and O atoms, respectively. The reaction of CO2+ + O is observed to yield O2+ exclusively. These values help resolve discrepancies in the literature and are important for modeling of the Martian atmosphere.

3.
J Phys Chem A ; 121(1): 24-30, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-27996263

ABSTRACT

We present rate constants and product branching ratios for the reactions of FeOx+ (x = 0-4) with ozone at 500 K. Fe+ is observed to react with ozone at the collision rate to produce FeO+ + O2. The FeO+ in turn reacts with ozone at the collision rate to yield both Fe+ and FeO2+ product channels. Ions up to FeO4+ display similar reactivity patterns. Three-body clustering reactions with O2 prevent us from measuring accurate rate constants at 300 K although the data do suggest that the efficiency is also high. Therefore, it is probable that little to no temperature dependence exists over this range. Implications of our measurements to the regulation of atmospheric iron and ozone are discussed. Density functional calculations on the reaction of Fe+ with ozone show no substantial kinetic barriers to make the FeO+ + O2 product channel, which is consistent with the reaction's efficiency. While a pathway to make FeO2+ + O is also found to be barrierless, our experiments indicate no primary FeO2+ formation for this reaction.

4.
Rev Sci Instrum ; 86(8): 084101, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26329209

ABSTRACT

A new ion source region has been constructed and attached to a variable temperature selected ion flow tube. The source features the capabilities of electron impact, chemical ionization, a solids probe, and electrospray ionization. The performance of the instrument is demonstrated through a series of reactions from ions created in each of the new source regions. The chemical ionization source is able to create H3O(+), but not as efficiently as similar sources with larger apertures. The ability of this source to support a solids probe, however, greatly expands our capabilities. A variety of rhenium cations and dications are created from the solids probe in sufficient abundance to study in the flow tube. The reaction of Re(+) with O2 proceeds with a rate constant that agrees with the literature measurements, while the reaction of Re2(2+) is found to charge transfer with O2 at about 60% of the collision rate; we have also performed calculations that support the charge transfer pathway. The electrospray source is used to create Ba(+), which is reacted with N2O to create BaO(+), and we find a rate constant that agrees with the literature.

5.
Phys Chem Chem Phys ; 17(30): 19700-8, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26126995

ABSTRACT

The rates of the reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2 are modeled by statistical rate theory accounting for energy- and angular momentum-specific rate constants for formation of the primary and secondary cationic adducts and their backward and forward reactions. The reactions are both suggested to proceed on sextet and quartet potential energy surfaces with efficient, but probably not complete, equilibration by spin-inversion of the populations of the sextet and quartet adducts. The influence of spin-inversion on the overall reaction rate is investigated. The differences of the two reaction rates mostly are due to different numbers of entrance states (atom + linear rotor or linear rotor + linear rotor, respectively). The reaction Fe(+) + N2O was studied either with (6)Fe(+) or with (4)Fe(+) reactants. Differences in the rate constants of (6)Fe(+) and (4)Fe(+) reacting with N2O are attributed to different contributions from electronically excited potential energy surfaces, such as they originate from the open-electronic shell reactants.


Subject(s)
Carbon Dioxide/chemistry , Carbon Monoxide/chemistry , Iron/chemistry , Models, Chemical , Nitrogen Oxides/chemistry , Thermodynamics
6.
Phys Chem Chem Phys ; 17(30): 19709-17, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26129708

ABSTRACT

The reactions of FeO(+) with H2 and of Fe(+) with N2O were studied with respect to the production and reactivity of electronically excited (4)Fe(+) cations. The reaction of electronic ground state (6)FeO(+) with H2 was found to predominantly produce electronically excited (4)Fe(+) as opposed to electronic ground state (6)Fe(+) corresponding to a spin-allowed reaction. (4)Fe(+) was observed to react with N2O with a rate constant of 2.3 (+0.3/-0.8) × 10(-11) cm(3) molecule(-1) s(-1), smaller than the ground state (6)Fe(+) rate constant of 3.2 (±0.5) × 10(-11) cm(3) molecule(-1) s(-1) (at room temperature). While the overall reaction of (6)FeO(+) with H2 within the Two-State-Reactivity concept is governed by efficient sextet-quartet spin-inversion in the initial reaction complex, the observation of predominant (4)Fe(+) production in the reaction is attributed to a much less efficient quartet-sextet back-inversion in the final reaction complex. Average spin-inversion probabilities are estimated by statistical modeling of spin-inversion processes and related to the properties of spin-orbit coupling along the reaction coordinate. The reaction of FeO(+) with H2 served as a source for (4)Fe(+), subsequently reacting with N2O. The measured rate constant has allowed for a more detailed understanding of the ground state (6)Fe(+) reaction with N2O, leading to a significantly improved statistical modeling of the previously measured temperature dependence of the reaction. In particular, evidence for the participation of electronically excited states of the reaction complex was found. Deexcitation of (4)Fe(+) by He was found to be slow, with a rate constant <3 × 10(-14) cm(3) molecule(-1) s(-1).


Subject(s)
Hydrogen/chemistry , Iron/chemistry , Nitrogen Oxides/chemistry , Cations/chemistry , Monte Carlo Method , Quantum Theory , Temperature , Thermodynamics
7.
J Chem Phys ; 142(15): 154305, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25903888

ABSTRACT

The temperature variation of rate constants has been measured for the gas phase reactions of the oxycation O2(+) with N atoms and of N2(+) with O atoms from 120 to 400 K using a variable temperature-selected ion flow tube. Measured room temperature rate constants, 0.75 × 10(-10) cm(3) s(-1) (±30%) for O2(+) with N and 1.4 × 10(-10) cm(3) s(-1) (±30%) for N2(+) with O, are in agreement with previously reported values. A temperature dependence of T(-0.7(±0.3)) is observed for the O2(+) + N reaction; however, the N2(+) + O reaction is found to be independent of temperature. Calculations at varying levels of theory were used in tandem with experiments to evaluate likely pathways in potential energy surfaces for the reactions of concern.

8.
J Chem Phys ; 142(13): 134307, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25854243

ABSTRACT

The exothermicity of the chemi-ionization reaction Sm + O → SmO(+) + e(-) has been re-evaluated through the combination of several experimental methods. The thermal reactivity (300-650 K) of Sm(+) and SmO(+) with a range of species measured using a selected ion flow tube-mass spectrometer apparatus is reported and provides limits for the bond strength of SmO(+), 5.661 eV ≤ D0(Sm(+)-O) ≤ 6.500 eV. A more precise value is measured to be 5.725 ± 0.07 eV, bracketed by the observed reactivity of Sm(+) and SmO(+) with several species using a guided ion beam tandem mass spectrometer (GIBMS). Combined with the established Sm ionization energy (IE), this value indicates an exothermicity of the title reaction of 0.08 ± 0.07 eV, ∼0.2 eV smaller than previous determinations. In addition, the ionization energy of SmO has been measured by resonantly enhanced two-photon ionization and pulsed-field ionization zero kinetic energy photoelectron spectroscopy to be 5.7427 ± 0.0006 eV, significantly higher than the literature value. Combined with literature bond energies of SmO, this value indicates an exothermicity of the title reaction of 0.14 ± 0.17 eV, independent from and in agreement with the GIBMS result presented here. The evaluated thermochemistry also suggests that D0(SmO) = 5.83 ± 0.07 eV, consistent with but more precise than the literature values. Implications of these results for interpretation of chemical release experiments in the thermosphere are discussed.

9.
J Phys Chem A ; 118(34): 6789-97, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25077435

ABSTRACT

The reactions of FeO(+) with H2, D2, and HD were studied in detail from 170 to 670 K by employing a variable temperature selected ion flow tube apparatus. High level electronic structure calculations were performed and compared to previous theoretical treatments. Statistical modeling of the temperature and isotope dependent rate constants was found to reproduce all data, suggesting the reaction could be well explained by efficient crossing from the sextet to quartet surface, with a rigid near thermoneutral barrier accounting for both the inefficiency and strong negative temperature dependence of the reactions over the measured range of thermal energies. The modeling equally well reproduced earlier guided ion beam results up to translational temperatures of about 4000 K.


Subject(s)
Deuterium/chemistry , Ferric Compounds/chemistry , Iron/chemistry , Temperature , Water/chemistry , Computer Simulation , Ions/chemistry , Isotopes/chemistry , Kinetics , Models, Chemical , Models, Statistical
10.
J Phys Chem A ; 118(37): 8141-6, 2014 Sep 18.
Article in English | MEDLINE | ID: mdl-24588097

ABSTRACT

We have determined the rate constants and branching ratios for the reactions of CO(+) with CH4 and CD4 in a variable-temperature selected ion flow tube. We find that the rate constants are collisional for all temperatures measured (193-700 K for CH4 and 193-500 K for CD4). For the CH4 reaction, three product channels are identified, which include charge transfer (CH4(+) + CO), H-atom transfer (HCO(+) + CH3), and H-atom expulsion (CH3CO(+) + H). H-atom transfer is slightly preferred to charge transfer at low temperature, with the charge-transfer product increasing in contribution as the temperature is increased (H-atom expulsion is a minor product for all temperatures). Analogous products are identified for the CD4 reaction. Density functional calculations on the CO(+) + CH4 reaction were also conducted, revealing that the relative temperature dependences of the charge-transfer and H-atom transfer pathways are consistent with an initial charge transfer followed by proton transfer.

11.
J Am Chem Soc ; 136(13): 4821-4, 2014 Apr 02.
Article in English | MEDLINE | ID: mdl-24625131

ABSTRACT

Metal clusters featuring closed supershells or aromatic character usually exhibit remarkably enhanced stability in their cluster series. However, not all stable clusters are subject to these fundamental constraints. Here, by employing photoelectron imaging spectroscopy and ab initio calculations, we present experimental and theoretical evidence on the existence of unexpectedly stable open-shell clusters, which are more stable than their closed-shell and aromatic counterparts. The stabilization of these open-shell Al-Mg clusters is proposed to originate from the S-P molecular orbital coupling, leading to highly stable species with increased HOMO-LUMO gaps, akin to s-p hybridization in an organic carbon atom that is beneficial to form stable species. Introduction of the coupling effect highlighted here not only shows the limitations of the conventional closed-shell model and aromaticity but also provides the possibility to design valuable building blocks.

12.
J Phys Chem A ; 118(11): 2029-39, 2014 Mar 20.
Article in English | MEDLINE | ID: mdl-24568117

ABSTRACT

The temperature dependences of the rate constants and product branching ratios for the reactions of FeO(+) with CH4 and CD4 have been measured from 123 to 700 K. The 300 K rate constants are 9.5 × 10(-11) and 5.1 × 10(-11) cm(3) s(-1) for the CH4 and CD4 reactions, respectively. At low temperatures, the Fe(+) + CH3OH/CD3OD product channel dominates, while at higher temperatures, FeOH(+)/FeOD(+) + CH3/CD3 becomes the majority channel. The data were found to connect well with previous experiments at higher translational energies. The kinetics were simulated using a statistical adiabatic channel model (vibrations are adiabatic during approach of the reactants), which reproduced the experimental data of both reactions well over the extended temperature and energy ranges. Stationary point energies along the reaction pathway determined by ab initio calculations seemed to be only approximate and were allowed to vary in the statistical model. The model shows a crossing from the ground-state sextet surface to the excited quartet surface with large efficiency, indicating that both states are involved. The reaction bottleneck for the reaction is found to be the quartet barrier, for CH4 modeled as -22 kJ mol(-1) relative to the sextet reactants. Contrary to previous rationalizations, neither less favorable spin-crossing at increased energies nor the opening of additional reaction channels is needed to explain the temperature dependence of the product branching fractions. It is found that a proper treatment of state-specific rotations is crucial. The modeled energy for the FeOH(+) + CH3 channel (-1 kJ mol(-1)) agrees with the experimental thermochemical value, while the modeled energy of the Fe(+) + CH3OH channel (-10 kJ mol(-1)) corresponds to the quartet iron product, provided that spin-switching near the products is inefficient. Alternative possibilities for spin switching during the reaction are considered. The modeling provides unique insight into the reaction mechanisms as well as energetic benchmarks for the reaction surface.


Subject(s)
Ferric Compounds/chemistry , Methane/chemistry , Models, Statistical , Temperature , Kinetics , Methanol/chemical synthesis , Methanol/chemistry
13.
J Phys Chem A ; 117(51): 14019-27, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24274119

ABSTRACT

Direct dynamics simulations and selected ion flow tube (SIFT) experiments were performed to study the kinetics and dynamics of the OH(-) + CH3I reaction versus temperature. This work complements previous direct dynamics simulation and molecular beam ion imaging experiments of this reaction versus reaction collision energy (Xie et al. J. Phys. Chem. A 2013, 117, 7162). The simulations and experiments are in quite good agreement. Both identify the SN2, OH(-) + CH3I → CH3OH + I(-), and proton transfer, OH(-) + CH3I → CH2I(-) + H2O, reactions as having nearly equal importance. In the experiments, the SN2 pathway constitutes 0.64 ± 0.05, 0.56 ± 0.05, 0.51 ± 0.05, and 0.46 ± 0.05 of the total reaction at 210, 300, 400, and 500 K, respectively. For the simulations this fraction is 0.56 ± 0.06, 0.55 ± 0.04, and 0.50 ± 0.05 at 300, 400, and 500 K, respectively. The experimental total reaction rate constant is (2.3 ± 0.6) × 10(-9), (1.7 ± 0.4) × 10(-9), (1.9 ± 0.5) × 10(-9), and (1.8 ± 0.5) × 10(-9) cm(3) s(-1) at 210, 300, 400, and 500 K, respectively, which is approximately 25% smaller than the collision capture value. The simulation values for this rate constant are (1.7 ± 0.2) × 10(-9), (1.8 ± 0.1) × 10(-9), and (1.6 ± 0.1) × 10(-9) cm(3)s(-1) at 300, 400, and 500 K. From the simulations, direct rebound and stripping mechanisms as well as multiple indirect mechanisms are identified as the atomic-level reaction mechanisms for both the SN2 and proton-transfer pathways. For the SN2 reaction the direct and indirect mechanisms have nearly equal probabilities; the direct mechanisms are slightly more probable, and direct rebound is more important than direct stripping. For the proton-transfer pathway the indirect mechanisms are more important than the direct mechanisms, and stripping is significantly more important than rebound for the latter. Calculations were performed with the OH(-) quantum number J equal to 0, 3, and 6 to investigate the effect of OH(-) rotational excitation on the OH(-) + CH3I reaction dynamics. The overall reaction probability and the probabilities for the SN2 and proton-transfer pathways have little dependence on J. Possible effects on the atomistic mechanisms were investigated for the SN2 pathway and the probability of the direct rebound mechanism increased with J. However, the other atomistic mechanisms were not appreciably affected by J.

14.
J Chem Phys ; 139(14): 144302, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24116614

ABSTRACT

Rate constants for the reactions of O2(-) and O(-) with N and O atoms have been measured for the first time as a function of temperature from 173 to 500 K for O(-) reactions and 173 to 400 K for O2(-) reactions. Room temperature rate constants for O2(-) reacting with N and O are 3.1 × 10(-10) and 1.7 × 10(-10) cm(3) s(-1), respectively, and the corresponding O(-) rate constants are 1.7 × 10(-10) and 1.5 × 10(-10) cm(3) s(-1), in good agreement with previous values. Temperature dependences are about T(-1.7) for both O2(-) reactions and T(-0.6) and T(-1.3) for the reactions of O(-) with N and O, respectively. Branching for the O2(-) reaction with N is found to predominantly form O(-) (>85%) in contrast to previous measurements, which reported NO2 + e(-) as the main channel. Calculations point to the present results being correct. The potential energy surface for this reaction was calculated using density functional theory, coupled cluster with singles, doubles (triples), complete active space self-consistent field, and complete active space second-order perturbation methods and is found to be quite complex, with agreement between the calculated surface and the observed kinetic data only possible through the inclusion of dynamical correlation.

15.
J Phys Chem A ; 117(40): 10178-85, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24028537

ABSTRACT

We present the first temperature-dependent rate constants and branching ratios for the reactions of Fe(+) and FeO(+) with C2H2, C2H4, and C2H6 from 170 to 700 K. Fe(+) is observed to react only by association with the three hydrocarbons, with temperature dependencies of T(-2) to T(-3). FeO(+) reacts with C2H2 and C2H4 at the collision rate over the temperature range, and their respective product branchings show similar temperature dependences. In contrast, the reaction with ethane is collisional at 170 K but varies as T(-0.5), while the product branching remains essentially flat with temperature. These variations in reactivity are discussed in terms of the published reactive potential surfaces. The effectiveness of Fe(+) as an oxygen-transfer catalyst toward the three hydrocarbons is also discussed.

17.
Phys Chem Chem Phys ; 15(27): 11257-67, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23722386

ABSTRACT

The ion-molecule reactions Fe(+) + N2O → FeO(+) + N2 and FeO(+) + CO → Fe(+) + CO2, which catalyze the reaction CO + N2O → CO2 + N2, have been studied over the temperature range 120-700 K using a variable temperature selected ion flow tube apparatus. Values of the rate constants for the former two reactions were experimentally derived as k2 (10(-11) cm(3) s(-1)) = 2.0(±0.3) (T/300)(-1.5(±0.2)) + 6.3(±0.9) exp(-515(±77)/T) and k3 (10(-10) cm(3) s(-1)) = 3.1(±0.1) (T/300)(-0.9(±0.1)). Characterizing the energy parameters of the reactions by density functional theory at the B3LYP/TZVP level, the rate constants are modeled, accounting for the intermediate formation of complexes. The reactions are characterized by nonstatistical intrinsic dynamics and rotation-dependent competition between forward and backward fluxes. For Fe(+) + N2O, sextet-quartet switching of the potential energy surfaces is quantified. The rate constant for the clustering reaction FeO(+) + N2O + He → FeO(N2O)(+) + He was also measured, being k4 (10(-27) cm(6) s(-1)) = 1.1(±0.1) (T/300)(-2.5(±0.1)) in the low pressure limit, and analyzed in terms of unimolecular rate theory.


Subject(s)
Carbon Monoxide/chemistry , Iron/chemistry , Nitrous Oxide/chemistry , Temperature , Catalysis , Cations/chemistry , Gases/chemistry , Kinetics , Oxidation-Reduction , Quantum Theory
18.
J Phys Chem A ; 117(46): 11896-905, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-23692206

ABSTRACT

The electronic and structural properties of small monomagnesium oxide clusters, MgO(x)(-) and MgO(x) (x = 1-4), have been investigated using a synergistic approach combining photoelectron imaging spectroscopy and first principles electronic structure calculations. The adiabatic detachment energy (ADE) and vertical detachment energy (VDE) of MgO(x)(-) clusters along with the photoelectron angular distributions (PADs) are determined experimentally. The measured PADs of the clusters are dependent on both the orbital symmetry and electron kinetic energies. Density-functional theory (DFT) calculations were performed to explore the optimized geometries of neutral and anionic MgO(x) clusters. The theoretical ADE and VDE values calculated according to the optimized geometries are in good agreement with our experimental measurements. In addition, MgO(-) and MgO4 clusters are found to have enhanced relative stability in the corresponding anionic and neutral series, based on both theoretical parameters and the experimental cluster distribution.

19.
J Chem Phys ; 138(15): 154201, 2013 Apr 21.
Article in English | MEDLINE | ID: mdl-23614415

ABSTRACT

A novel technique using a flowing afterglow-Langmuir probe apparatus for measurement of temperature dependences of rate constants for dissociative recombination (DR) is presented. Low (~10(11) cm(-3)) concentrations of a neutral precursor are added to a noble gas∕electron afterglow plasma thermalized at 300-500 K. Charge exchange yields one or many cation species, each of which may undergo DR. Relative ion concentrations are monitored at a fixed reaction time while the initial plasma density is varied between 10(9) and 10(10) cm(-3). Modeling of the decrease in concentration of each cation relative to the non-recombining noble gas cation yields the rate constant for DR. The technique is applied to several species (O2(+), CO2(+), CF3(+), N2O(+)) with previously determined 300 K values, showing excellent agreement. The measurements of those species are extended to 500 K, with good agreement to literature values where they exist. Measurements are also made for a range of CnHm(+) (C7H7(+), C7H8(+), C5H6(+), C4H4(+), C6H5(+), C3H3(+), and C6H6(+)) derived from benzene and toluene neutral precursors. CnHm(+) DR rate constants vary from 8-12 × 10(-7) cm(3) s(-1) at 300 K with temperature dependences of approximately T(-0.7). Where prior measurements exist these results are in agreement, with the exception of C3H3(+) where the present results disagree with a previously reported flat temperature dependence.

20.
Phys Chem Chem Phys ; 15(9): 3173-8, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23340689

ABSTRACT

Photoelectron imaging experiments and detailed calculations are conducted on Al(n)(-) clusters (n = 3-6) and a calibration method is developed for connecting experimental observations of photoelectron angular distributions to theoretical predictions. It is shown that this method can be used to quantify the degree to which the molecular orbitals are built from s- or p-like atomic orbitals. The highest occupied molecular orbitals of these small aluminum clusters are found to contain varying degrees of s-p mixing, with Al(3)(-) containing the "most hybridized" orbital and Al(4)(-) containing the "least hybridized" orbital. It is shown experimentally that s-p hybridization is already present for the trimer species and, similar to other properties of small metal clusters, oscillates with cluster size.

SELECTION OF CITATIONS
SEARCH DETAIL
...