Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(8)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36009284

ABSTRACT

The review presents evidence that the main damage to the vascular wall occurs not from the action of "oxidized" LDL, which contain hydroperoxy acyls in the phospholipids located in their outer layer, but from the action of LDL particles whose apoprotein B-100 is chemically modified with low molecular weight dicarbonyls, such as malondialdehyde, glyoxal, and methylglyoxal. It has been argued that dicarbonyl-modified LDL, which have the highest cholesterol content, are particularly "atherogenic". High levels of dicarbonyl-modified LDL have been found to be characteristic of some mutations of apoprotein B-100. Based on the reviewed data, we hypothesized a common molecular mechanism underlying vascular wall damage in atherosclerosis and diabetes mellitus. The important role of oxidatively modified LDL in endothelial dysfunction is discussed in detail. In particular, the role of the interaction of the endothelial receptor LOX-1 with oxidatively modified LDL, which leads to the expression of NADPH oxidase, which in turn generates superoxide anion radical, is discussed. Such hyperproduction of ROS can cause destruction of the glycocalyx, a protective layer of endotheliocytes, and stimulation of apoptosis in these cells. On the whole, the accumulated evidence suggests that carbonyl modification of apoprotein B-100 of LDL is a key factor responsible for vascular wall damage leading to atherogenesis and endothelial dysfunction. Possible ways of pharmacological correction of free radical processes in atherogenesis and diabetogenesis are also discussed.

2.
Int J Mol Sci ; 24(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36613568

ABSTRACT

This mini review is devoted to a specific issue: the role of malondialdehyde (MDA)-a secondary product of free radical lipid peroxidation-in the molecular mechanisms of the formation of primary atherosclerotic vascular wall lesions. The principal difference between this review and the available literature is that it discusses in detail the important role in atherogenesis not of "oxidized" LDL (i.e., LDL particles containing lipohydroperoxides), but of LDL particles chemically modified by the natural low-molecular weight dicarbonyl MDA. To confirm this, we consider the data obtained by us earlier, indicating that "atherogenic" are not LDL oxidized as a result of free radical lipoperoxidation and containing lipohydroperoxy derivatives of phospholipids in the outer layer of particles, but LDL whose apoprotein B-100 has been modified due to the chemical reaction of terminal lysine residue amino groups of the apoB-100 with the aldehyde groups of the MDA (Maillard reaction). In addition, we present our original data proving that MDA injures endothelial glycocalyx that suppress the ability of the endothelium to control arterial tone according to changes in wall shear stress. In summary, this mini review for the first time exhaustively discloses the key role of MDA in atherogenesis.


Subject(s)
Atherosclerosis , Heart Diseases , Humans , Malondialdehyde/chemistry , Lipoproteins, LDL/metabolism , Atherosclerosis/etiology , Lipid Peroxidation , Free Radicals
3.
Mol Cell Biochem ; 396(1-2): 79-85, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25064448

ABSTRACT

Under some pathological conditions, the natural dicarbonyl compounds can accumulate in the blood. The examples are malonyldialdehyde (MDA) formed as a secondary product of lipid peroxidation of unsaturated fatty acids during atherosclerosis, and glyoxal (GOX), a homolog of MDA, which accumulates during glucose autoxidation in patients with diabetes mellitus. This study compared the influence of both dicarbonyl compounds on low-density lipoproteins (LDL) and the membrane of endotheliocytes. In comparison with GOX, MDA induced more pronounced changes in physical and chemical properties of LDL particles. On the other hand, GOX-modified LDL particles were more prone to oxidation and aggregation than MDA-modified LDL. Incubation of endotheliocytes with MDA increased cell mechanical stiffness in contrast to incubation with GOX, which decreased it.


Subject(s)
Endothelial Cells/drug effects , Glyoxal/pharmacology , Lipoproteins, LDL/chemistry , Malondialdehyde/pharmacology , Cell Membrane/drug effects , Cells, Cultured , Electrophoresis, Agar Gel , Endothelial Cells/chemistry , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Glyoxal/chemistry , Humans , Lipid Peroxides/chemistry , Lipoproteins, LDL/blood , Malondialdehyde/chemistry , Rheology/methods
4.
Ann Biomed Eng ; 42(8): 1644-57, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24781532

ABSTRACT

In many studies, the functional state of vessels of different caliber was determined by fitting the lumped parameters of a mathematical model of the bed in order to fit the vascular input impedance (Z in) data. However, reliability of the results obtained in such a way remains uncertain. In this study, we employed a mathematical model with seven lumped parameters and Z in experimental data to analyze the distribution of resistance across the arterial bed of the hind limb in anesthetized cats, to test reliability of this distribution and to describe the process of ascending arterial dilation followed occlusion of iliac artery. The vascular bed was divided into three segments: large arteries, medium-sized arterial vessels and precapillary resistance vessels together with venous part of the bed. Based on the data of Z in measured in a wide frequency range (from 0 to 150 Hz) we showed that pharmacologically induced constriction and dilation of the arterial microvessels were reflected in the model by the changes in the resistance of distal precapillary vessels only, whereas the local constriction or dilation of femoral and iliac arteries as well as artificial stenosis of the femoral artery resulted exclusively in the changes of the resistance describing the state of large arteries. Using the input impedance method we could demonstrate and quantitatively describe the process of ascending arterial dilation during the post-occlusion (reactive) hyperemia. All these results prove that the model of vascular bed with seven lumped elements used in combination with input hydraulic impedance data can be an effective tool permitted to quantitatively analyze the functional state of arterial vessels of different caliber and to describe the changes in resistance of arterial vessels during vascular reactions.


Subject(s)
Arteries/physiology , Models, Biological , Vascular Resistance/physiology , Acetylcholine/pharmacology , Animals , Arteries/drug effects , Cats , Electric Impedance , Female , Hyperemia/physiopathology , Lower Extremity , Male , Norepinephrine/pharmacology , Vascular Resistance/drug effects , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/pharmacology
5.
J Vasc Res ; 44(1): 1-10, 2007.
Article in English | MEDLINE | ID: mdl-17148940

ABSTRACT

The effect of shear stress at the endothelium in the attenuation of the noradrenaline-induced constriction of the femoral vascular bed perfused at a constant blood flow was investigated in 16 anesthetized cats. It is known that the adrenergic vasoconstriction of the femoral vascular bed is considerably greater at a constant pressure perfusion than at a constant blood flow. This difference may depend on the ability of the endothelium to relax smooth muscle in response to an increase in wall shear stress. Since the shear stress is directly related to the blood flow and inversely related to the third power of vessel diameter, vasoconstriction at a constant blood flow increases the wall shear stress that is the stimulus for smooth muscle relaxation opposing constriction. On the other hand, at a constant perfusion pressure, vasoconstriction is accompanied by a decrease in flow rate, which prevents a wall shear stress increase. To reveal the effect of endothelial sensitivity to shear stress, we compared noradrenaline-induced changes in total and proximal arterial resistances during perfusion of the hind limb at a constant blood flow and at a constant pressure in vessels with intact and injured endothelium. We found that in the endothelium-intact bed the same concentration of noradrenaline at a constant flow caused an increase in overall vascular peripheral resistance that was half as large as at a constant perfusion pressure. This difference is mainly confined to the proximal arterial vessels (arteries and large arterioles) whose resistance at a constant flow increased only 0.19 +/- 0.03 times compared to that at a constant pressure. The removal of the endothelium only slightly increased constrictor responses at the perfusion under a constant pressure (noradrenaline-induced increases of both overall and proximal arterial resistance augmented by 12%), while the responses of the proximal vessels at a constant flow became 4.7 +/- 0.4 times greater than in the endothelium-intact bed. A selective blockage of endothelium sensitivity to shear stress using a glutaraldehyde dimer augmented the constrictor responses of the proximal vessels at a constant flow 4.6-fold (+/-0.3), but had no significant effect on the responses at a constant pressure. These results are consistent with the conclusion that the difference in constrictor responses at constant flow and pressure perfusions depends mainly on the smooth muscle relaxation caused by increased wall shear stress.


Subject(s)
Endothelium, Vascular/physiology , Femoral Artery/physiology , Norepinephrine/pharmacology , Shear Strength , Vasoconstriction/drug effects , Vasoconstrictor Agents/pharmacology , Animals , Blood Flow Velocity , Blood Pressure , Cats , Endothelium, Vascular/drug effects , Femoral Artery/drug effects , Muscle, Skeletal/blood supply , Muscle, Smooth, Vascular/physiology , Perfusion , Stress, Mechanical , Vascular Resistance/drug effects , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...