Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Prostaglandins Leukot Essent Fatty Acids ; 201: 102623, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823349

ABSTRACT

INTRODUCTION: We examined the relationship between Apolipoprotein E (APOE) genotype and n-3 highly unsaturated fatty acid (HUFA) levels in participants of the seAFOod trial, who were undergoing colonoscopy surveillance after removal of colorectal polyps. METHODS: Baseline and on-treatment (eicosapentaenoic acid [EPA] 2 g daily or placebo for 6 months) levels of n-3 HUFAs, and plasma 18-hydroxyeicosapentaenoic acid (HEPE), were analysed according to APOE genotype (based on polymorphisms rs429358 and rs7412) in 584 participants. RESULTS: Before treatment, APOE2/2 individuals had lower levels, and APOE4/4 participants had higher levels, of n-3 HUFAs, including EPA, than APOE3/3 counterparts (P < 0.01 for the APOE2/2 versus APOE4/4 comparison). After EPA supplementation, n-3 HUFA levels were not significantly different when stratified by APOE genotype, although APOE4 carriers displayed lower plasma 18-HEPE levels than individuals without an APOE4 allele (P = 0.002). CONCLUSIONS: APOE genotype is associated with differential n-3 HUFA and 18-HEPE levels in individuals with multiple colorectal polyps.

2.
Cancer Prev Res (Phila) ; 16(11): 621-629, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37756582

ABSTRACT

Aspirin and eicosapentaenoic acid (EPA) reduce colorectal adenomatous polyp risk and affect synthesis of oxylipins including prostaglandin E2. We investigated whether 35 SNPs in oxylipin metabolism genes such as cyclooxygenase (PTGS) and lipoxygenase (ALOX), as well as 7 SNPs already associated with colorectal cancer risk reduction by aspirin (e.g., TP53; rs104522), modified the effects of aspirin and EPA on colorectal polyp recurrence in the randomized 2 × 2 factorial seAFOod trial. Treatment effects were reported as the incidence rate ratio (IRR) and 95% confidence interval (CI) by stratifying negative binomial and Poisson regression analyses of colorectal polyp risk on SNP genotype. Statistical significance was reported with adjustment for the false discovery rate as the P and q value. 542 (of 707) trial participants had both genotype and colonoscopy outcome data. Reduction in colorectal polyp risk in aspirin users compared with nonaspirin users was restricted to rs4837960 (PTGS1) common homozygotes [IRR, 0.69; 95% confidence interval (CI), 0.53-0.90); q = 0.06], rs2745557 (PTGS2) compound heterozygote-rare homozygotes [IRR, 0.60 (0.41-0.88); q = 0.06], rs7090328 (ALOX5) rare homozygotes [IRR 0.27 (0.11-0.64); q = 0.05], rs2073438 (ALOX12) common homozygotes [IRR, 0.57 (0.41-0.80); q = 0.05], and rs104522 (TP53) rare homozygotes [IRR, 0.37 (0.17-0.79); q = 0.06]. No modification of colorectal polyp risk in EPA users was observed. In conclusion, genetic variants relevant to the proposed mechanism of action on oxylipins are associated with differential colorectal polyp risk reduction by aspirin in individuals who develop multiple colorectal polyps. SNP genotypes should be considered during development of personalized, predictive models of colorectal cancer chemoprevention by aspirin. PREVENTION RELEVANCE: Single-nucleotide polymorphisms in genes controlling lipid mediator signaling may modify the colorectal polyp prevention activity of aspirin. Further investigation is required to determine whether testing for genetic variants can be used to target cancer chemoprevention by aspirin to those who will benefit most.


Subject(s)
Colonic Polyps , Colorectal Neoplasms , Humans , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Aspirin/therapeutic use , Colonic Polyps/epidemiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/prevention & control , Colorectal Neoplasms/epidemiology , Cyclooxygenase 2 , Eicosapentaenoic Acid , Genes, p53 , Lipoxygenase/genetics , Oxylipins , Polymorphism, Single Nucleotide , Risk Reduction Behavior , Tumor Suppressor Protein p53/genetics
3.
J Pathol ; 259(1): 56-68, 2023 01.
Article in English | MEDLINE | ID: mdl-36219477

ABSTRACT

Melanoma is a heterogenous malignancy with an unpredictable clinical course. Most patients who present in the clinic are diagnosed with primary melanoma, yet large-scale sequencing efforts have focused primarily on metastatic disease. In this study we sequence-profiled 524 American Joint Committee on Cancer Stage I-III primary tumours. Our analysis of these data reveals recurrent driver mutations, mutually exclusive genetic interactions, where two genes were never or rarely co-mutated, and an absence of co-occurring genetic events. Further, we intersected copy number calls from our primary melanoma data with whole-genome CRISPR screening data to identify the transcription factor interferon regulatory factor 4 (IRF4) as a melanoma-associated dependency. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Melanoma , Humans , Mutation , Melanoma/genetics , Genome , Genomics , United Kingdom
4.
Pigment Cell Melanoma Res ; 35(2): 252-267, 2022 03.
Article in English | MEDLINE | ID: mdl-34826184

ABSTRACT

Microscopic ulceration is an independent predictor of melanoma death. Here, we used systems biology to query the role of host and tumour-specific processes in defining the phenotype. Albumin level as a measure of systemic inflammation was predictive of fewer tumour-infiltrating lymphocytes and poorer survival in the Leeds Melanoma Cohort. Ulcerated melanomas were thicker and more mitotically active (with corresponding transcriptomic upregulated cell cycle pathways). Sequencing identified tumoural p53 and APC mutations, and TUBB2B amplification as associated with the phenotype. Ulcerated tumours had perturbed expression of cytokine genes, consistent with protumourigenic inflammation and histological and transcriptomic evidence for reduced adaptive immune cell infiltration. Pathway/network analysis of multiomic data using neural networks highlighted a role for the ß-catenin pathway in the ulceration, linking genomic changes in the tumour to immunosuppression and cell proliferation. In summary, the data suggest that ulceration is in part associated with genomic changes but that host factors also predict melanoma death with evidence of reduced immune responses to the tumour.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Inflammation/genetics , Melanoma/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Systems Biology , Ulcer/pathology
5.
Clin Cancer Res ; 25(24): 7424-7435, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31515461

ABSTRACT

PURPOSE: Previously identified transcriptomic signatures have been based on primary and metastatic melanomas with relatively few American Joint Committee on Cancer (AJCC) stage I tumors, given difficulties in sampling small tumors. The advent of adjuvant therapies has highlighted the need for better prognostic and predictive biomarkers, especially for AJCC stage I and stage II disease. EXPERIMENTAL DESIGN: A total of 687 primary melanoma transcriptomes were generated from the Leeds Melanoma Cohort (LMC). The prognostic value of existing signatures across all the AJCC stages was tested. Unsupervised clustering was performed, and the prognostic value of the resultant signature was compared with that of sentinel node biopsy (SNB) and tested as a biomarker in three published immunotherapy datasets. RESULTS: Previous Lund and The Cancer Genome Atlas signatures predicted outcome in the LMC dataset (P = 10-8 to 10-4) but showed a significant interaction with AJCC stage (P = 0.04) and did not predict outcome in stage I tumors (P = 0.3-0.7). Consensus-based classification of the LMC dataset identified six classes that predicted outcome, notably in stage I disease. LMC class was a similar indicator of prognosis when compared with SNB, and it added prognostic value to the genes reported by Gerami and colleagues. One particular LMC class consistently predicted poor outcome in patients receiving immunotherapy in two of three tested datasets. Biological characterization of this class revealed high JUN and AXL expression and evidence of epithelial-to-mesenchymal transition. CONCLUSIONS: A transcriptomic signature of primary melanoma was identified with prognostic value, including in stage I melanoma and in patients undergoing immunotherapy.


Subject(s)
Biomarkers, Tumor/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Immunotherapy/mortality , Melanoma/pathology , Skin Neoplasms/pathology , Transcriptome , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Humans , Male , Melanoma/genetics , Melanoma/therapy , Middle Aged , Neoplasm Staging , Skin Neoplasms/genetics , Skin Neoplasms/therapy , Survival Rate , Treatment Outcome , Young Adult , Melanoma, Cutaneous Malignant
6.
Cancer Res ; 79(10): 2684-2696, 2019 May 15.
Article in English | MEDLINE | ID: mdl-30773503

ABSTRACT

The immune response to melanoma improves the survival in untreated patients and predicts the response to immune checkpoint blockade. Here, we report genetic and environmental predictors of the immune response in a large primary cutaneous melanoma cohort. Bioinformatic analysis of 703 tumor transcriptomes was used to infer immune cell infiltration and to categorize tumors into immune subgroups, which were then investigated for association with biological pathways, clinicopathologic factors, and copy number alterations. Three subgroups, with "low", "intermediate", and "high" immune signals, were identified in primary tumors and replicated in metastatic tumors. Genes in the low subgroup were enriched for cell-cycle and metabolic pathways, whereas genes in the high subgroup were enriched for IFN and NF-κB signaling. We identified high MYC expression partially driven by amplification, HLA-B downregulation, and deletion of IFNγ and NF-κB pathway genes as the regulators of immune suppression. Furthermore, we showed that cigarette smoking, a globally detrimental environmental factor, modulates immunity, reducing the survival primarily in patients with a strong immune response. Together, these analyses identify a set of factors that can be easily assessed that may serve as predictors of response to immunotherapy in patients with melanoma. SIGNIFICANCE: These findings identify novel genetic and environmental modulators of the immune response against primary cutaneous melanoma and predict their impact on patient survival.See related commentary by Anichini, p. 2457.


Subject(s)
Melanoma/genetics , Skin Neoplasms/genetics , Down-Regulation , Humans , Immunotherapy , Signal Transduction/genetics
7.
J Clin Invest ; 128(5): 2048-2063, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29664013

ABSTRACT

Immunotherapy prolongs survival in only a subset of melanoma patients, highlighting the need to better understand the driver tumor microenvironment. We conducted bioinformatic analyses of 703 transcriptomes to probe the immune landscape of primary cutaneous melanomas in a population-ascertained cohort. We identified and validated 6 immunologically distinct subgroups, with the largest having the lowest immune scores and the poorest survival. This poor-prognosis subgroup exhibited expression profiles consistent with ß-catenin-mediated failure to recruit CD141+ DCs. A second subgroup displayed an equally bad prognosis when histopathological factors were adjusted for, while 4 others maintained comparable survival profiles. The 6 subgroups were replicated in The Cancer Genome Atlas (TCGA) melanomas, where ß-catenin signaling was also associated with low immune scores predominantly related to hypomethylation. The survival benefit of high immune scores was strongest in patients with double-WT tumors for BRAF and NRAS, less strong in BRAF-V600 mutants, and absent in NRAS (codons 12, 13, 61) mutants. In summary, we report evidence for a ß-catenin-mediated immune evasion in 42% of melanoma primaries overall and in 73% of those with the worst outcome. We further report evidence for an interaction between oncogenic mutations and host response to melanoma, suggesting that patient stratification will improve immunotherapeutic outcomes.


Subject(s)
GTP Phosphohydrolases/immunology , Melanoma/immunology , Membrane Proteins/immunology , Mutation , Proto-Oncogene Proteins B-raf/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , beta Catenin/immunology , Female , GTP Phosphohydrolases/genetics , Humans , Male , Melanoma/genetics , Melanoma/pathology , Membrane Proteins/genetics , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Microenvironment/genetics , beta Catenin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...