Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Chemosphere ; 349: 140823, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38042422

ABSTRACT

Once released into the environment, herbicides can move through soil or surface water to streams and groundwater. Filters containing adsorbent media placed in fields may be an effective solution to herbicide loss in the environment. However, to date, no study has investigated the use of adsorbent materials in intervention systems at field-scale, nor has any study investigated their optimal configuration. Therefore, the aim of this paper was to examine the efficacy of low-cost, coconut-based activated carbon (CAC) intervention systems, placed in streams and tributaries, for herbicide removal. Two configurations of interventions were investigated in two agricultural catchments and one urban area in Ireland: (1) filter bags and (2) filter bags fitted into polyethylene pipes. Herbicide sampling was conducted using Chemcatcher® passive sampling devices in order to identify trends in herbicide exceedances at the sites, and to quantifiably assess, compare, and contrast the efficiency of the two intervention configurations. While the Chemcatcher® passive sampling devices are capable of analysing eighteen different acid herbicides, only six different acid herbicides (2,4-D, clopyralid, fluroxypyr, MCPA, mecoprop and triclopyr) were ever detected within the three catchment areas, which were also the only acid herbicides used therein. The CAC was capable of complete herbicide removal, when the water flow was slow (0.5-1 m3 s-1), and the interventions spanned the width and depth of the waterway. Overall, the reduction in herbicide concentrations was better for the filter pipes than for the filter bags, with a 48% reduction in detections and a 37% reduction in exceedances across all the sampling sites for the filter pipe interventions compared to a 13% reduction in the number of detections and a 24% reduction in exceedances across all sampling sites for the filter bag interventions (p < 0.05). This study demonstrates, for the first time, that CAC may be an effective in situ remediation strategy to manage herbicide exceedances close to the source, thereby reducing the impact on environmental and public health.


Subject(s)
Herbicides , Water Pollutants, Chemical , Herbicides/analysis , Cocos , Charcoal , Agriculture , Water , Water Pollutants, Chemical/analysis
2.
Water Res ; 220: 118654, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35635916

ABSTRACT

Detection of the agricultural acid herbicide MCPA (2-methyl-4-chlorophenoxyacetic acid) in drinking water source catchments is of growing concern, with economic and environmental implications for water utilities and wider ecosystem services. MCPA is poorly adsorbed to soil and highly mobile in water, but hydrological pathway processes are relatively unknown at the catchment scale and limited by coarse resolution data. This understanding is required to target mitigation measures and to provide a framework to monitor their effectiveness. To address this knowledge gap, this study reports findings from river discharge and synchronous MCPA concentration datasets (continuous 7 hour and with additional hourly sampling during storm events) collected over a 7 month herbicide spraying season. The study was undertaken in a surface (source) water catchment (384 km2-of which 154 km2 is agricultural land use) in the cross-border area of Ireland. Combined into loads, and using two pathway separation techniques, the MCPA data were apportioned into event and baseload components and the former was further separated to quantify a quickflow (QF) and other event pathways. Based on the 7 hourly dataset, 85.2 kg (0.22 kg km-2 by catchment area, or 0.55 kg km-2 by agricultural area) of MCPA was exported from the catchment in 7 months. Of this load, 87.7 % was transported via event flow pathways with 72.0 % transported via surface dominated (QF) pathways. Approximately 12 % of the MCPA load was transported via deep baseflows, indicating a persistence in this delayed pathway, and this was the primary pathway condition monitored in a weekly regulatory sampling programme. However, overall, the data indicated a dominant acute, storm dependent process of incidental MCPA loss during the spraying season. Reducing use and/or implementing extensive surface pathway disconnection measures are the mitigation options with greatest potential, the success of which can only be assessed using high temporal resolution monitoring techniques.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Drinking Water , Herbicides , Ecosystem , Environmental Monitoring , Herbicides/analysis , Rivers
3.
J Contam Hydrol ; 247: 103979, 2022 05.
Article in English | MEDLINE | ID: mdl-35231779

ABSTRACT

Water quality degradation can be caused by excessive agricultural nutrient transfers from fertilised soils exposed to wet weather. Mitigation measures within the EU Nitrates Directive aim to reduce this pressure by including 'closed' fertiliser spreading periods during wet months. For organic fertilisers such as slurry and manure, this closed period requires sufficient on-farm winter storage and good weather conditions to relieve storage at the end of the period. Therefore, robust scientific evidence is needed to support the measure. Incidental nutrient transfers of recently applied organic fertilisers in wet weather can also be complicated by synchronous transfers from residual soil stores and tracing is required for risk assessments. The combination of nutrient monitoring and biomarker analyses may aid this and one such biomarker suite is faecal steroids. Accordingly, this study investigated the persistence of steroids and their association with phosphorus during leaching episodes. The focus was on the coupled behaviour of steroids and total phosphorus (TP) concentrations in sub-surface hydrological pathways. Cattle slurry was applied to monolith lysimeters either side of a closed period and concentrations of both steroids and TP were monitored in the leachate. The study showed no significant effect of the treatment (average p = 0.17), though tracer concentrations did significantly change over time (average p = 0.001). While the steroidal concentration ratio was validated for herbivorous faecal pollution in the leachate, there was a weak positive correlation between the steroids and TP. Further investigation at more natural scales (hillslope/catchment) is required to confirm tracer behaviours/correlations and to compliment this sub-surface pathway study.


Subject(s)
Fertilizers , Phosphorus , Animals , Cattle , Fertilizers/analysis , Manure , Phosphorus/analysis , Soil , Steroids
4.
Sci Total Environ ; 787: 147576, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34000530

ABSTRACT

The agri-food economy can be a significant driver of water quality pressures but the role of hydro-meteorological patterns in a changing climate also requires consideration. For this purpose, an assessment was made of a ten-year synchronous high temporal resolution water quality and hydro-meteorological dataset in Irish agricultural catchments. Changes occurring to rainfall intensity and soil temperature patterns were found to be important drivers of nutrient mobility in soils. There were links between the intensity of the North Atlantic Oscillation over the decade and large shifts in baseline nutrient concentrations in catchments. The data also revealed extreme weather impacts to pollution patterns including short periods of rain induced nutrient flux, that exceeded average annual mass loads in these catchments, and drought influences on point source pollution. These influences need consideration, and may require different mitigation strategies, as links between water quality land use pressure and water quality state in regulatory reviews. In a decade of both increased land use source and hydro-meteorological transport pressures, water quality natural capital in Ireland has faced a perfect storm. Such conditions are difficult to model and only revealed in high temporal resolution datasets.

5.
Sci Total Environ ; 754: 142112, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33254851

ABSTRACT

Colloid-facilitated transport can be important for preferential transfer of phosphorus (P) through the soil profile to groundwater and may in part explain elevated P concentrations in surface water during baseflow and particularly high flow conditions. To investigate the potential for colloidal P (Pcoll) mobilisation in soils, this study assessed the role of soil chemical properties and P fertilizer type on medium-sized soil Pcoll (200-450 nm) and its association with soil solution soluble bioavailable P (<450 nm). Hillslope soils from three agricultural catchments were sampled and untreated and treated (cattle slurry and synthetic fertilizer) subsamples were incubated. Soil supernatants were analysed for P and soil Water Dispersible Colloids (WDC) were extracted for analysis of P and P-binding materials. Soils physicochemical properties including degree of P saturation (DPS) and P sorption properties were determined. Results indicated that medium-sized Pcoll was mostly unreactive P associated to some extent to amorphous forms of Fe. Medium-sized Pcoll concentrations correlated negatively with soil maximum P sorption capacity and soluble P concentrations increased with increasing DPS. In soil with low sorption properties, cattle slurry increased soluble P concentrations by 0.008-0.013 mg l-1 and DPS but did not influence medium-sized Pcoll. Synthetic fertilizer increased medium-sized reactive Pcoll by 0.011 mg l-1 (0.088 mg kg-1 soil) and DPS in a soil with lower DPS whereas it decreased it by 0.005 mg l-1 (0.040 mg kg-1 soil) in a soil with higher DPS. Additional soil parameters (M3-Fe, M3-Al, M3-P, and DPS) should be included in soil testing, especially in Cambisol/Podzol soils, to identify critical areas where risks of Pcoll mobilisation are important. Further research should include the roles of finer colloidal and nanoparticulate (<200 nm) soil P fractions and soluble P to inform understanding of plant uptake and assess environmental risk.

6.
Sci Total Environ ; 755(Pt 2): 142971, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33172636

ABSTRACT

Despite an improvement of water quality across Europe there are many pollution hotspots for both nitrates and PPPs, mainly due to agricultural activities. The BMPs and MMs to reduce pollution from agriculture are well known, and there are policy instruments in place to ensure drinking water standards, but the current approach has not been efficient enough. Within the H2020 Water Protect project the premise was that there is a need for a multi-actor, participatory approach to tackle the issue from a new angle, and to assess why the uptake of known BMPs and MMs was not better among farmers. Seven "Action Labs" were selected that represent major physical, socio-economical, cultural and farming settings across Europe. A methodology of multi-actor engagement was chosen but with different approaches due to the local context. Initially the level of farmers' awareness about water quality issues was matched to the observed uptake rates of BMPs and MMs. In a second survey barriers hindering the uptake of measures were identified. The first survey revealed a low general awareness on the potential pollution to drinking water sources. Despite this, between 24% to 88% of the surveyed farmers per Action Lab were already voluntarily adopting one quarter of the selected BMPs and MMs. The second survey demonstrated the need to address organisational, legislative, sociological and technical barriers. The lack of coordination between different institutional bodies promoting measures and the financial incentives needed to invest and operate these often-costly measures need to be considered. The multi-actor, participatory approach with its improved awareness and collaboration made it possible to identify the crucial factors for improvement - to build a social acceptance among all actors and communicate the issues and solutions from the start.

7.
Water Air Soil Pollut ; 231(10): 524, 2020.
Article in English | MEDLINE | ID: mdl-33088005

ABSTRACT

Clean water is a precious resource, and policies/programmes are implemented worldwide to protect and/or improve water quality. Faecal pollution can be a key contributor to water quality decline causing eutrophication through nutrient enrichment and pathogenic contamination. The robust sourcing of faecal pollutants is important to be able to target the appropriate sector and to engage managers. Biomarker technology has the potential for source confirmation, by using, for example the biomarker suite of steroids. Steroids have been used in the differentiation of human and animal faeces; however, there is no unequivocal extraction technique. Some of the methods used include (i) Soxhlet extraction, (ii) Bligh and Dyer (BD) extraction, and (iii) accelerated solvent extraction (ASE). The less costly and time intensive technique of ASE is particularly attractive, but a current research gap concerns further comparisons regarding ASE lipid extraction from soils/slurries compared with the more traditional Soxhlet and BD extractions. Accordingly, a randomised complete block experiment was implemented to assess differences between the three extraction methods, differences between the different sample types, and the interactions between these two factors. Following GC-MS, it was found that there was no significant difference between the results of the steroid extraction methods, regardless of the type of sample used, for the quantity of each steroid extracted. It was concluded that ASE could be used confidently instead of the more established steroid extraction methods, thereby delivering time and cost savings.

8.
Sci Total Environ ; 747: 141232, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-32771787

ABSTRACT

Worldwide herbicide use in agriculture, whilst safeguarding yields also presents water quality issues. Controlling factors in agricultural catchments include both static and dynamic parameters. The present study investigated the occurrence of herbicides in streams and groundwater in two meso-scale catchments with contrasting flow controls and agricultural landuse (grassland and arable land). Using a multi-dimensional approach, streams were monitored from November 2018 to November 2019 using Chemcatcher® passive sampling devices and groundwater was sampled in 95 private drinking water wells. The concentrations of herbicides were larger in the stream of the Grassland catchment (8.9-472.6 ng L-1) dominated by poorly drained soils than in the Arable catchment (0.9-169.1 ng L-1) dominated by well-drained soils. Incidental losses of herbicides during time of application and low flows in summer caused concentrations of MCPA, Fluroxypyr, Trichlorpyr, Clopyralid and Mecoprop to exceeded the European Union (EU) drinking water standard due to a lack of dilution. Herbicides were present in the stream throughout the year and the total mass load was higher in winter flows, suggesting a persistence of primary chemical residues in soil and sub-surface environments and restricted degradation. Losses of herbicides to the streams were source limited and influenced by hydrological conditions. Herbicides were detected in 38% of surveyed drinking water wells. While most areas had concentrations below the EU drinking water standard some areas with well-drained soils in the Grassland catchment, had concentrations exceeding recommendations. Individual wells had concentrations of Clopyralid (619 ng L-1) and Trichlorpyr (650 ng L-1). Despite the study areas not usually associated with herbicide pollution, and annual mass loads being comparatively low, many herbicides were present in both surface and groundwater, sometimes above the recommendations for drinking water. This whole catchment assessment provides a basis to develop collaborative measures to mitigate pollution of water by herbicides.


Subject(s)
Groundwater , Herbicides , Water Pollutants, Chemical , Agriculture , Environmental Monitoring , Herbicides/analysis , Water Pollutants, Chemical/analysis , Water Quality
9.
J Environ Qual ; 48(5): 1218-1233, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31589714

ABSTRACT

The evolution of phosphorus (P) management decision support tools (DSTs) and systems (DSS), in support of food and environmental security has been most strongly affected in developed regions by national strategies (i) to optimize levels of plant available P in agricultural soils, and (ii) to mitigate P runoff to water bodies. In the United States, Western Europe, and New Zealand, combinations of regulatory and voluntary strategies, sometimes backed by economic incentives, have often been driven by reactive legislation to protect water bodies. Farmer-specific DSSs, either based on modeling of P transfer source and transport mechanisms, or when coupled with farm-specific information or local knowledge, have typically guided best practices, education, and implementation, yet applying DSSs in data poor catchments and/or where user adoption is poor hampers the effectiveness of these systems. Recent developments focused on integrated digital mapping of hydrologically sensitive areas and critical source areas, sometimes using real-time data and weather forecasting, have rapidly advanced runoff modeling and education. Advances in technology related to monitoring, imaging, sensors, remote sensing, and analytical instrumentation will facilitate the development of DSSs that can predict heterogeneity over wider geographical areas. However, significant challenges remain in developing DSSs that incorporate "big data" in a format that is acceptable to users, and that adequately accounts for catchment variability, farming systems, and farmer behavior. Future efforts will undoubtedly focus on improving efficiency and conserving phosphate rock reserves in the face of future scarcity or prohibitive cost. Most importantly, the principles reviewed here are critical for sustainable agriculture.


Subject(s)
Agriculture , Phosphorus , Environment , New Zealand , Soil
10.
Molecules ; 24(10)2019 May 22.
Article in English | MEDLINE | ID: mdl-31121991

ABSTRACT

A comprehensive multiresidue method was developed and validated for the determination of 40 anthelmintic compounds, including 13 transformation products, in surface and groundwater samples at sub nanogram per litre (ng L-1) levels. Anthelmintic residues were extracted from unfiltered water samples using polymeric divinylbenzene solid phase extraction (SPE) cartridges, and eluted with methanol: acetone (50:50, v/v). Purified extracts were concentrated, filtered and injected for UHPLC-MS/MS determination. The method recovery (at a concentration representative of realistic expected environmental water levels based on literature review) ranged from 83-113%. The method was validated, at three concentration levels, in accordance to Commission Decision 2002/657/EC and SANTE/11813/2017 guidelines. Trueness and precision, under within-laboratory reproducibility conditions, ranged from 88-114% and 1.1-19.4%, respectively. The applicability of the method was assessed in a pilot study whereby 72 different surface and groundwater samples were collected and analysed for the determination of these 40 compounds for the first time in Ireland. This is the most comprehensive method available for the investigation of the occurrence of both anthelmintic parent compounds and their transformation products in raw, unfiltered environmental waters.


Subject(s)
Anthelmintics/analysis , Solid Phase Extraction/methods , Water Pollutants, Chemical/analysis , Chromatography, Liquid , Environmental Monitoring/methods , Tandem Mass Spectrometry
11.
Sci Total Environ ; 683: 9-20, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31128565

ABSTRACT

Freshwaters worldwide are affected by multiple stressors. Timing of inputs and pathways of delivery can influence the impact stressors have on freshwater communities. In particular, effects of point versus diffuse nutrient inputs on stream macroinvertebrates are poorly understood. Point-source inputs tend to pose a chronic problem, whereas diffuse inputs tend to be acute with short concentration spikes. We manipulated three key agricultural stressors, phosphorus (ambient, chronic, acute), nitrogen (ambient, chronic, acute) and fine sediment (ambient, high), in 112 stream mesocosms (26 days colonisation, 18 days of manipulations) and determined the individual and combined effects of these stressors on stream macroinvertebrate communities (benthos and drift). Chronic nutrient treatments continuously received high concentrations of P and/or N. Acute channels received the same continuous enrichment, but concentrations were doubled during two 3-hour periods (day 6, day 13) to simulate acute nutrient inputs during rainstorms. Sediment was the most pervasive stressor in the benthos, reducing total macroinvertebrate abundance and richness, EPT (mayflies, stoneflies, caddisflies) abundance and richness. By contrast, N or P enrichment did not affect any of the six studied community-level metrics. In the drift assemblage, enrichment effects became more prevalent the longer the experiment went on. Sediment was the dominant driver of drift responses at the beginning of the experiment. After the first acute nutrient pulse, sediment remained the most influential stressor but its effects started to fade. After the second pulse, N became the dominant stressor. In general, impacts of either N or P on the drift were due to chronic exposure, with acute nutrient pulses having no additional effects. Overall, our findings imply that cost-effective management should focus on mitigating sediment inputs first and tackle chronic nutrient inputs second. Freshwater managers should also take into account the length of exposure to high nutrient concentrations, rather than merely the concentrations themselves.


Subject(s)
Geologic Sediments/analysis , Invertebrates/drug effects , Nitrogen/analysis , Phosphorus/analysis , Rivers/chemistry , Animals , Biota/drug effects , Biota/physiology , Invertebrates/physiology , Ireland , Nutrients/analysis , Time Factors
12.
Sci Total Environ ; 663: 709-717, 2019 May 01.
Article in English | MEDLINE | ID: mdl-30731416

ABSTRACT

Forecasting pesticide residues in soils in real time is essential for agronomic purposes, to manage phytotoxic effects, and in catchments to manage surface and ground water quality. This has not been possible in the past due to both modelling and measurement constraints. Here, the analytical transient probability distribution (pdf) of pesticide concentrations is derived. The pdf results from the random ways in which rain events occur after pesticide application. First-order degradation kinetics and linear equilibrium sorption are assumed. The analytical pdfs allow understanding of the relative contributions that climate (mean storm depth and mean rainfall event frequency) and chemical (sorption and degradation) properties have on the variability of soil concentrations into the future. We demonstrated the two uncertain reaction parameters can be constrained using Bayesian methods. An approach to a Bayesian informed forecast is then presented. With the use of new rapid tests capable of providing quantitative measurements of soil concentrations in the field, real-time forecasting of future pesticide concentrations now looks possible for the first time. Such an approach offers new means to manage crops, soils and water quality, and may be extended to other classes of pesticides for ecological risk assessment purposes.

13.
Sci Total Environ ; 637-638: 577-587, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29754091

ABSTRACT

Multiple stressors affect stream ecosystems worldwide and their interactions are of particular concern, with gaps existing in understanding stressor impacts on stream communities. Addressing these knowledge gaps will aid in targeting and designing of appropriate mitigation measures. In this study, the agricultural stressors fine sediment (ambient, low, medium, high), phosphorus (ambient, enriched) and nitrogen (ambient, enriched) were manipulated simultaneously in 64 streamside mesocosms to determine their individual and combined effects on the macroinvertebrate community (benthos and drift). Stressor levels were chosen to reflect those typically observed in European agricultural streams. A 21-day colonisation period was followed by a 14-day manipulative period. Results indicate that added sediment had the most pervasive effects, significantly reducing total macroinvertebrate abundance, total EPT abundance and abundances of three common EPT taxa. The greatest effect was at high sediment cover (90%), with decreasing negative impacts at medium (50%) and low (30%) covers. Added sediment also led to higher drift propensities for nine of the twelve drift variables. The effects of nitrogen and phosphorus were relatively weak compared to sediment. Several complex and unpredictable 2-way or 3-way interactions among stressors were observed. While sediment addition generally reduced total abundance at high levels, this decrease was amplified by P enrichment at low sediment, whereas the opposite effect occurred at medium sediment and little effect at high sediment. These results have direct implications for water management as they highlight the importance of managing sediment inputs while also considering the complex interactions which can occur between sediment and nutrient stressors.


Subject(s)
Aquatic Organisms/physiology , Ecosystem , Invertebrates/physiology , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants/analysis , Animals , Environmental Monitoring , Geologic Sediments , Rivers/chemistry
14.
Sci Rep ; 8(1): 944, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29343796

ABSTRACT

Management of agricultural diffuse pollution to water remains a challenge and is influenced by the complex interactions of rainfall-runoff pathways, soil and nutrient management, agricultural landscape heterogeneity and biogeochemical cycling in receiving water bodies. Amplified cycles of weather can also influence nutrient loss to water although they are less considered in policy reviews. Here, we present the development of climate-chemical indicators of diffuse pollution in highly monitored catchments in Western Europe. Specifically, we investigated the influences and relationships between weather processes amplified by the North Atlantic Oscillation during a sharp upward trend (2010-2016) and the patterns of diffuse nitrate and phosphorus pollution in rivers. On an annual scale, we found correlations between local catchment-scale nutrient concentrations in rivers and the influence of larger, oceanic-scale climate patterns defined by the intensity of the North Atlantic Oscillation. These influences were catchment-specific showing positive, negative or no correlation according to a typology. Upward trends in these decadal oscillations may override positive benefits of local management in some years or indicate greater benefits in other years. Developing integrated climate-chemical indicators into catchment monitoring indicators will provide a new and important contribution to water quality management objectives.

15.
Ambio ; 47(Suppl 1): 3-19, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159449

ABSTRACT

This special issue of Ambio compiles a series of contributions made at the 8th International Phosphorus Workshop (IPW8), held in September 2016 in Rostock, Germany. The introducing overview article summarizes major published scientific findings in the time period from IPW7 (2015) until recently, including presentations from IPW8. The P issue was subdivided into four themes along the logical sequence of P utilization in production, environmental, and societal systems: (1) Sufficiency and efficiency of P utilization, especially in animal husbandry and crop production; (2) P recycling: technologies and product applications; (3) P fluxes and cycling in the environment; and (4) P governance. The latter two themes had separate sessions for the first time in the International Phosphorus Workshops series; thus, this overview presents a scene-setting rather than an overview of the latest research for these themes. In summary, this paper details new findings in agricultural and environmental P research, which indicate reduced P inputs, improved management options, and provide translations into governance options for a more sustainable P use.


Subject(s)
Agriculture , Animal Husbandry , Ecosystem , Animals , Fertilizers , Germany , Phosphorus
16.
Sci Total Environ ; 601-602: 594-602, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28577396

ABSTRACT

Pesticide contamination of water is a potential environmental issue which may impact the quality of drinking water. The full extent of pesticide contamination is not fully understood due to complex fate pathways in the subsurface. Groundwater pesticide occurrence was investigated at seven agricultural sites in different hydrogeological settings to identify where pesticide occurrence dominated in temperate maritime climatic conditions. In Ireland, six cereal dominated sites in the South East and one grassland site in the West were investigated. Soil and subsoils varied from acid brown earths with high permeability to clay and silt rich tills with lower permeability. Over a 2year monitoring period, 730 samples were collected from a network of dedicated wells and springs across the seven sites. Multi-nested piezometers were installed in intergranular, fissured and karstic type aquifers to target shallow, transition and deeper groundwaters. Several springs were also sampled and the network included a confined aquifer. Groundwater was analysed for nine pesticide active ingredients and eight metabolites. Mecoprop and 2,4-D were the most frequently detected active ingredients above the instrument detection limit, accounting for 36% and 26% of the 730 samples collected and analysed. Phenoxyacetic acid was the most frequently detected and widespread metabolite found in 39% of samples collected at all seven sites. Where the European Union drinking water standard of 0.1µg/L was exceeded, metabolites accounted for the majority of exceedances with 3,5-dichlorobenzoic acid (DBA) and phenoxyacetic acid (PAC) dominating. Highest detections were encountered in sites with well drained soils underlain by gravel and limestone aquifers and within gravel lenses in lower permeability subsoil. Across the seven sites pesticide detections were mostly associated with metabolites and the environmental impact of many of these is unknown as they have received little attention in groundwater previously.

17.
Sci Total Environ ; 599-600: 1275-1287, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28531946

ABSTRACT

Diffuse transfer of nitrogen (N) and phosphorus (P) in agricultural catchments is controlled by the mobilisation of sources and their delivery to receiving waters. While plot scale experiments have focused on mobilisation processes, many catchment scale studies have hitherto concentrated on the controls of dominant flow pathways on nutrient delivery. To place mobilisation and delivery at a catchment scale, this study investigated their relative influence on contrasting nitrate-N and soluble P concentrations and N:P ratios in two shallow groundwater fed catchments with different land use (grassland and arable) on the Atlantic seaboard of Europe. Detailed datasets of N and P inputs, concentrations in shallow groundwater and concentrations in receiving streams were analysed over a five year period (October 2010-September 2015). Results showed that nitrate-N and soluble P concentrations in shallow groundwater give a good indication of stream concentrations, which suggests a dominant control of mobilisation processes on stream exports. Near-stream attenuation of nitrate-N (-30%), likely through denitrification and dilution, and enrichment in soluble P (+100%), through soil-groundwater interactions, were similar in both catchments. The soil, climate and land use controls on mobilisation were also investigated. Results showed that grassland tended to limit nitrate-N leaching as compared to arable land, but grassland could also contribute to increased P solubilisation. In the context of land use change in these groundwater fed systems, the risk of pollution swapping between N and P must be carefully considered, particularly for interactions of land use with soil chemistry and climate.

18.
Sci Total Environ ; 590-591: 469-483, 2017 Jul 15.
Article in English | MEDLINE | ID: mdl-28284645

ABSTRACT

Stormflow and baseflow phosphorus (P) concentrations and loads in rivers may exert different ecological pressures during different seasons. These pressures and subsequent impacts are important to disentangle in order to target and monitor the effectiveness of mitigation measures. This study investigated the influence of stormflow and baseflow P pressures on stream ecology in six contrasting agricultural catchments. A five-year high resolution dataset was used consisting of stream discharge, P chemistry, macroinvertebrate and diatom ecology, supported with microbial source tracking and turbidity data. Total reactive P (TRP) loads delivered during baseflows were low (1-7% of annual loads), but TRP concentrations frequently exceeded the environmental quality standard (EQS) of 0.035mgL-1 during these flows (32-100% of the time in five catchments). A pilot microbial source tracking exercise in one catchment indicated that both human and ruminant faecal effluents were contributing to these baseflow P pressures but were diluted at higher flows. Seasonally, TRP concentrations tended to be highest during summer due to these baseflow P pressures and corresponded well with declines in diatom quality during this time (R2=0.79). Diatoms tended to recover by late spring when storm P pressures were most prevalent and there was a poor relationship between antecedent TRP concentrations and diatom quality in spring (R2=0.23). Seasonal variations were less apparent in the macroinvertebrate indices; however, there was a good relationship between antecedent TRP concentrations and macroinvertebrate quality during spring (R2=0.51) and summer (R2=0.52). Reducing summer point source discharges may be the quickest way to improve ecological river quality, particularly diatom quality in these and similar catchments. Aligning estimates of P sources with ecological impacts and identifying ecological signals which can be attributed to storm P pressures are important next steps for successful management of agricultural catchments at these scales.


Subject(s)
Environmental Monitoring , Phosphorus/chemistry , Rivers/chemistry , Water Movements , Agriculture , Animals , Diatoms , Ecology , Humans , Invertebrates
19.
Sci Total Environ ; 553: 404-415, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26933967

ABSTRACT

Managing incidental losses associated with liquid slurry applications during closed periods has significant cost and policy implications and the environmental data required to review such a measure are difficult to capture due to storm dependencies. Over four years (2010-2014) in five intensive agricultural catchments, this study used high-resolution total and total reactive phosphorus (TP and TRP), total oxidised nitrogen (TON) and suspended sediment (SS) concentrations with river discharge data to investigate the magnitude and timing of nutrient losses. A large dataset of storm events (defined as 90th percentile discharges), and associated flow-weighted mean (FWM) nutrient concentrations and TP/SS ratios, was used to indicate when losses were indicative of residual or incidental nutrient transfers. The beginning of the slurry closed period was reflective of incidental and residual transfers with high storm FWM P (TP and TRP) concentrations, with some catchments also showing elevated storm TP:SS ratios. This pattern diminished at the end of the closed period in all catchments. Total oxidised N behaved similarly to P during storms in the poorly drained catchments and revealed a long lag time in other catchments. Low storm FWM P concentrations and TP:SS ratios during the weeks following the closed period suggests that nutrients either weren't applied during this time (best times chosen) or that they were applied to less risky areas (best places chosen). For other periods such as late autumn and during wet summers, where storm FWM P concentrations and TP:SS ratios were high, it is recommended that an augmentation of farmer knowledge of soil drainage characteristics with local and detailed current and forecast soil moisture conditions will help to strengthen existing regulatory frameworks to avoid storm driven incidental nutrient transfers.

20.
Environ Sci Technol ; 50(4): 1769-78, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26784287

ABSTRACT

Within agricultural watersheds suspended sediment-discharge hysteresis during storm events is commonly used to indicate dominant sediment sources and pathways. However, availability of high-resolution data, qualitative metrics, longevity of records, and simultaneous multiwatershed analyses has limited the efficacy of hysteresis as a sediment management tool. This two year study utilizes a quantitative hysteresis index from high-resolution suspended sediment and discharge data to assess fluctuations in sediment source location, delivery mechanisms and export efficiency in three intensively farmed watersheds during events over time. Flow-weighted event sediment export was further considered using multivariate techniques to delineate rainfall, stream hydrology, and antecedent moisture controls on sediment origins. Watersheds with low permeability (moderately- or poorly drained soils) with good surface hydrological connectivity, therefore, had contrasting hysteresis due to source location (hillslope versus channel bank). The well-drained watershed with reduced connectivity exported less sediment but, when watershed connectivity was established, the largest event sediment load of all watersheds occurred. Event sediment export was elevated in arable watersheds when low groundcover was coupled with high connectivity, whereas in the grassland watershed, export was attributed to wetter weather only. Hysteresis analysis successfully indicated contrasting seasonality, connectivity and source availability and is a useful tool to identify watershed specific sediment management practices.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments , Hydrology/methods , Agriculture , Rivers , Soil , Weather
SELECTION OF CITATIONS
SEARCH DETAIL
...