Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(25): 41979-41986, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38087582

ABSTRACT

We present a mode-locked semiconductor laser oscillator that emits few picosecond pulses (5-8ps at a repetition rate of 379MHz and wavelength of 1064nm) with record peak power (112W) and pulse energy (0.5nJ) directly out of the oscillator (with no amplifier). To achieve this high power performance we employ a high-current broad-area, spatially multi-mode diode amplifier (0.3×5mm), placed in an external cavity that enforces oscillation in a single spatial mode. Consequently, the brightness of the beam is near-ideal (M2 = 1.3). Mode locking is achieved by dividing the large diode chip (edge emitter) into two sections with independent electrical control: one large section for gain and another small section for a saturable absorber. Precise tuning of the reverse voltage on the absorber section allows to tune the saturation level and recovery time of the absorber, providing a convenient knob to optimize the mode-locking performance for various cavity conditions.

2.
Sci Rep ; 12(1): 14874, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050413

ABSTRACT

Dissipative solitons are fundamental wave-pulses that preserve their form in the presence of periodic loss and gain. The canonical realization of dissipative solitons is Kerr-lens mode locking in lasers, which delicately balance nonlinear and linear propagation in both time and space to generate ultrashort optical pulses. This linear-nonlinear balance dictates a unique pulse energy, which cannot be increased (say by elevated pumping), indicating that excess energy is expected to be radiated in the form of dispersive or diffractive waves. Here we show that Kerr-lens mode-locked lasers can overcome this expectation. Specifically, by breaking the spatial symmetry between the forward and backward halves of the round-trip in a linear cavity, the laser can modify the soliton in space to incorporate the excess energy. Increasing the pump power leads therefore to a different soliton solution, rather than to dispersive/diffractive loss. We predict this symmetry breaking by a complete numerical simulation of the spatio-temporal dynamics in the cavity, and confirm it experimentally in a Kerr-lens mode-locked Ti:Sapphire laser with quantitative agreement to the simulation. The simulation opens a window to directly observe the nonlinear space-time dynamics that molds the soliton pulse, and possibly to optimize it.

3.
Opt Lett ; 46(7): 1530-1533, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33793478

ABSTRACT

Passive mode-locking relies critically on a saturable loss mechanism to form ultrashort pulses. However, in Kerr-lens mode-locking (KLM), no actual absorption takes place, but rather losses appear due to diffraction, and actual light must escape the cavity. The Kerr-lens effect works to generate through diffraction an effective instantaneous saturable absorber that depends delicately on the interplay between the spatial and temporal profiles of the pulse. Despite the importance of KLM as a technique for generating ultrafast pulses and the fundamental role of diffraction losses in its operation, these losses have never been observed directly. Here, we measure the light that leaks out due to diffraction losses in a hard-aperture Kerr-lens mode-locked Ti:sapphire laser, and compare the measured results with a numerical theory that explicitly calculates the spatiotemporal behavior of the pulse.

SELECTION OF CITATIONS
SEARCH DETAIL
...