Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 6836, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38514719

ABSTRACT

Insect-based diets are gaining interest as potential ingredients in improving poultry gut health. This study assessed the dietary treatment with whole dried Tenebrio molitor larvae (TM) on broiler chickens' gut microbiota and morphology. 120 Ross-308 broilers received treated diets with 5% (TM5) and 10% (TM10) replacement ratio in a 35-day trial. Intestinal histomorphometry was assessed, as well as claudin-3 expression pattern and ileal and caecal digesta for microbial community diversity. Null hypothesis was tested with two-way ANOVA considering the intestinal segment and diet as main factors. The TM5 group presented higher villi in the duodenum and ileum compared to the other two (P < 0.001), while treated groups showed shallower crypts in the duodenum (P < 0.001) and deeper in the jejunum and ileum than the control (P < 0.001). Treatments increased the caecal Firmicutes/Bacteroidetes ratio and led to significant changes at the genus level. While Lactobacilli survived in the caecum, a significant reduction was evident in the ileum of both groups, mainly owed to L. aviarius. Staphylococci and Methanobrevibacter significantly increased in the ileum of the TM5 group. Results suggest that dietary supplementation with whole dried TM larvae has no adverse effect on the intestinal epithelium formation and positively affects bacterial population richness and diversity.


Subject(s)
Gastrointestinal Microbiome , Tenebrio , Animals , Chickens/microbiology , Animal Feed/analysis , Diet/veterinary , Larva , Dietary Supplements/analysis
2.
J Exp Bot ; 75(9): 2740-2753, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38366668

ABSTRACT

Ascorbic acid (AsA) plays an indispensable role in plants, serving as both an antioxidant and a master regulator of the cellular redox balance. Ascorbate oxidase (AO) is a blue copper oxidase that is responsible for the oxidation of AsA with the concomitant production of water. For many decades, AO was erroneously postulated as an enzyme without any obvious advantage, as it decreases the AsA pool size and thus is expected to weaken plant stress resistance. It was only a decade ago that this perspective shifted towards the fundamental role of AO in orchestrating both AsA and oxygen levels by influencing the overall redox balance in the extracellular matrix. Consistent with its localization in the apoplast, AO is involved in cell expansion, division, resource allocation, and overall plant yield. An increasing number of transgenic studies has demonstrated that AO can also facilitate communication between the surrounding environment and the cell, as its gene expression is highly responsive to factors such as hormonal signaling, oxidative stress, and mechanical injury. This review aims to describe the multiple functions of AO in plant growth, development, and stress resilience, and explore any additional roles the enzyme might have in fruits during the course of ripening.


Subject(s)
Ascorbate Oxidase , Ascorbate Oxidase/metabolism , Ascorbate Oxidase/genetics , Plants/enzymology , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Ascorbic Acid/metabolism , Plant Development
3.
Front Plant Sci ; 14: 1267340, 2023.
Article in English | MEDLINE | ID: mdl-37818313

ABSTRACT

Introduction: Tomato is a high economic value crop worldwide with recognized nutritional properties and diverse postharvest potential. Nowadays, there is an emerging awareness about the exploitation and utilization of underutilized traditional germplasm in modern breeding programs. In this context, the existing diversity among Greek accessions in terms of their postharvest life and nutritional value remains largely unexplored. Methods: Herein, a detailed evaluation of 130 tomato Greek accessions for postharvest and nutritional characteristics was performed, using metabolomics and transcriptomics, leading to the selection of accessions with these interesting traits. Results: The results showed remarkable differences among tomato Greek accessions for overall ripening parameters (color, firmness) and weight loss. On the basis of their postharvest performance, a balance between short shelf life (SSL) and long shelf life (LSL) accessions was revealed. Metabolome analysis performed on 14 selected accessions with contrasting shelf-life potential identified a total of 206 phytonutrients and volatile compounds. In turn, transcriptome analysis in fruits from the best SSL and the best LSL accessions revealed remarkable differences in the expression profiles of transcripts involved in key metabolic pathways related to fruit quality and postharvest potential. Discussion: The pathways towards cell wall synthesis, polyamine synthesis, ABA catabolism, and steroidal alkaloids synthesis were mostly induced in the LSL accession, whereas those related to ethylene biosynthesis, cell wall degradation, isoprenoids, phenylpropanoids, ascorbic acid and aroma (TomloxC) were stimulated in the SSL accession. Overall, these data would provide valuable insights into the molecular mechanism towards enhancing shelf-life and improving flavor and aroma of modern tomato cultivars.

4.
Plant Physiol Biochem ; 203: 108080, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37812990

ABSTRACT

Although amelioration of drought stress by Plant Growth Promoting Rhizobacteria (PGPR) is a well-documented phenomenon, the combined molecular and metabolic mechanisms governing this process remain unclear. In these lines, the present study aimed to provide new insights in the underlying drought attenuating mechanisms of tomato plants inoculated with a PGP Pseudomonas putida strain, by using a combination of metabolomic and transcriptomic approaches. Following Differentially Expressed Gene analysis, it became evident that inoculation resulted in a less disturbed plant transcriptome upon drought stress. Untargeted metabolomics highlighted the differential metabolite accumulation upon inoculation, as well as the less metabolic reprograming and the lower accumulation of stress-related metabolites for inoculated stressed plants. These findings were in line with morpho-physiological evidence of drought stress mitigation in the inoculated plants. The redox state modulation, the more efficient nitrogen assimilation, as well as the differential changes in amino acid metabolism, and the induction of the phenylpropanoid biosynthesis pathway, were the main drought-attenuating mechanisms in the SAESo11-inoculated plants. Shifts in pathways related to hormonal signaling were also evident upon inoculation at a transcript level and in conjunction with carbon metabolism regulation, possibly contributed to a drought-attenuation preconditioning. The identified signatory molecules of SAESo11-mediated priming against drought included aspartate, myo-inositol, glutamate, along with key genes related to trehalose, tryptophan and cysteine synthesis. Taken together, SAESo11-inoculation provides systemic effects encompassing both metabolic and regulatory functions, supporting both seedling growth and drought stress amelioration.


Subject(s)
Pseudomonas , Solanum lycopersicum , Pseudomonas/physiology , Transcriptome , Drought Resistance , Solanum lycopersicum/genetics , Metabolome , Droughts , Stress, Physiological/genetics
5.
Plant J ; 116(1): 303-319, 2023 10.
Article in English | MEDLINE | ID: mdl-37164361

ABSTRACT

Olive tree (Olea europaea L. subsp. europaea var. europaea) is one of the most important species of the Mediterranean region and one of the most ancient species domesticated. The availability of whole genome assemblies and annotations of olive tree cultivars and oleaster (O. europaea subsp. europaea var. sylvestris) has contributed to a better understanding of genetic and genomic differences between olive tree cultivars. However, compared to other plant species there is still a lack of genomic resources for olive tree populations that span the entire Mediterranean region. In the present study we developed the most complete genomic variation map and the most comprehensive catalog/resource of molecular variation to date for 89 olive tree genotypes originating from the entire Mediterranean basin, revealing the genetic diversity of this commercially significant crop tree and explaining the divergence/similarity among different variants. Additionally, the monumental ancient tree 'Throuba Naxos' was studied to characterize the potential origin or routes of olive tree domestication. Several candidate genes known to be associated with key agronomic traits, including olive oil quality and fruit yield, were uncovered by a selective sweep scan to be under selection pressure on all olive tree chromosomes. To further exploit the genomic and phenotypic resources obtained from the current work, genome-wide association analyses were performed for 23 morphological and two agronomic traits. Significant associations were detected for eight traits that provide valuable candidates for fruit tree breeding and for deeper understanding of olive tree biology.


Subject(s)
Olea , Olea/genetics , Genome-Wide Association Study , Plant Breeding , Chromosome Mapping , Genomics
6.
PeerJ ; 11: e15043, 2023.
Article in English | MEDLINE | ID: mdl-37013148

ABSTRACT

Dill (Anethum graveolens L.) is an aromatic herb widely used in the food industry, with several commercial cultivars available with different qualitative characteristics. Commercial cultivars are usually preferred over landraces due to their higher yield and also the lack of improved landraces than can be commercialized. In Greece, however, traditional dill landraces are cultivated by local communities. Many are conserved in the Greek Gene Bank and the aim here was to investigate and compare the morphological, genetic, and chemical biodiversity of twenty-two Greek landraces and nine modern/commercial cultivars. Multivariate analysis of the morphological descriptors, molecular markers, and essential oil and polyphenol composition revealed that the Greek landraces were clearly distinguished compared with modern cultivars at the level of phenological, molecular and chemical traits. Landraces were typically taller, with larger umbels, denser foliage, and larger leaves. Plant height, density of foliage, density of feathering as well as aroma characteristics were desirable traits observed for some landraces, such as T538/06 and GRC-1348/04, which were similar or superior to those of some commercial cultivars. Polymorphic loci for inter-simple sequence repeat (ISSR) and start codon targeted (SCoT) molecular markers were 76.47% and 72.41% for landraces, and 68.24% and 43.10% for the modern cultivars, respectively. Genetic divergence was shown, but not complete isolation, indicating that some gene flow may have occurred between landraces and cultivars. The major constituent in all dill leaf essential oils was α-phellandrene (54.42-70.25%). Landraces had a higher α-phellandrene and dill ether content than cultivars. Two dill landraces were rich in chlorogenic acid, the main polyphenolic compound determined. The study highlighted for the first-time Greek landraces with desirable characteristics regarding quality, yield, and harvest time suitable for breeding programs to develop new dill cultivars with superior features.


Subject(s)
Anethum graveolens , Flower Essences , Oils, Volatile , Anethum graveolens/genetics , Genotype , Plant Breeding , Oils, Volatile/chemistry , Multivariate Analysis
7.
iScience ; 26(1): 105917, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36691616

ABSTRACT

The term "terroir" has been widely employed to link differential geographic phenotypes with sensorial signatures of agricultural food products, influenced by agricultural practices, soil type, and climate. Nowadays, the geographical indications labeling has been developed to safeguard the quality of plant-derived food that is linked to a certain terroir and is generally considered as an indication of superior organoleptic properties. As the dynamics of agroecosystems are highly intricate, consisting of tangled networks of interactions between plants, microorganisms, and the surrounding environment, the recognition of the key molecular components of terroir fingerprinting remains a great challenge to protect both the origin and the safety of food commodities. Furthermore, the contribution of microbiome as a potential driver of the terroir signature has been underestimated. Herein, we present a first comprehensive view of the multi-omic landscape related to transcriptome, proteome, epigenome, and metagenome of the popular Protected Geographical Indication potatoes of Naxos.

8.
Plant Physiol Biochem ; 193: 124-138, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36356544

ABSTRACT

L-Ascorbic acid (AsA), a strong antioxidant, serves as an enzyme cofactor and redox status marker, modulating a plethora of biological processes. As tomato commercial varieties and hybrids possess relatively low amounts of AsA, the improvement of fruit AsA represents a strategic goal for enhanced human health. Previously, we have suggested that GDP-L-Galactose phosphorylase (GGP) and L-galactose-1-phosphate phosphatase (GPP) can serve as possible targets for AsA manipulation in tomato (Solanum lycopersicon L.) fruit. To this end, we produced and evaluated T3 transgenic tomato plants carrying these two genes under the control of CaMV-35S and two fruit specific promoters, PPC2 and PG-GGPI. The transgenic lines had elevated levels of AsA, with the PG-GGP1 line containing 3-fold more AsA than WT, without affecting fruit characteristics. Following RNA-Seq analysis, 164 and 13 DEGs were up- or down-regulated, respectively, between PG-GGP1 and WT pink fruits. PG-GGP1 fruit had a distinct number of up-regulated transcripts associated with cell wall modification, ethylene biosynthesis and signaling, pollen fertility and carotenoid metabolism. The elevated AsA accumulation resulted in the up regulation of AsA associated transcripts and alternative biosynthetic pathways suggesting that the entire metabolic pathway was influenced, probably via master regulation. We show here that AsA-fortification of tomato ripe fruit via GGP1 overexpression under the action of a fruit specific promoter PG affects fruit development and ripening, reduces ethylene production, and increased the levels of sugars, and carotenoids, supporting a robust database to further explore the role of AsA induced genes for agronomically important traits, breeding programs and precision gene editing approaches.


Subject(s)
Nutritive Value , Solanum lycopersicum , Ascorbic Acid/chemistry , Ethylenes/chemistry , Fruit/chemistry , Gene Expression Regulation, Plant , Solanum lycopersicum/chemistry , Solanum lycopersicum/genetics , Phosphates/chemistry , Phosphoric Monoester Hydrolases/genetics , Plant Breeding , Plants, Genetically Modified/chemistry
9.
J Plant Physiol ; 271: 153658, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35245824

ABSTRACT

A total of 11 potential plant growth promoting rhizobacteria previously isolated from naturally stressed environments were evaluated for various traits of interest for a beneficial symbiosis with plants, including colonization ability, biofilm formation, motility, exopolysaccharide production and salt tolerance. The vast majority of the strains were found to possess multiple plant growth promoting traits. Nevertheless, the intensity varied among isolates, with those originated from tomato plants being more efficient colonizers. The strain SAESo11, genetically characterized as a Pseudomonas putida member was selected for further investigation of its potential to alleviate drought stress in tomato seedlings. Inoculation with SAESo11 mitigated the negative effects of drought stress as indicated by growth and photosynthetic indices. Furthermore, bacterial inoculation enhanced H2O2 content and malondialdehyde levels in colonized plants. Drought treatment did not further alter the oxidative status of these plants. Similarly, total phenolic content and antioxidant enzyme activity were induced in plant tissues in response to drought stress only at the absence of inoculum. These results indicated that inoculation with the selected strain imposed plants at a priming state, that enabled them to respond more robustly at the exposure to drought stress and efficiently attenuated the drought-induced injury. This state of plant alertness mediated by SAESo11 occurred at no cost to growth, highlighting its role as a potential plant priming agent.


Subject(s)
Pseudomonas putida , Solanum lycopersicum , Droughts , Hydrogen Peroxide , Seeds , Stress, Physiological
10.
Plants (Basel) ; 11(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214906

ABSTRACT

The traditionally edible aerial parts of rock samphire (Crithmum maritimum L.) could be a valuable functional food or feed ingredient due to their high antioxidant capacity, ascorbic acid content, and rich content in secondary metabolites such as phenolics and flavonoids. The first objective of this study was to evaluate eighteen genotypes derived from different regions of Greece regarding the phytochemical contents of their soluble extracts in total phenolics, total flavonoids, and individual polyphenols as determined by LC-MS analysis, as well as ascorbic acid content and their antioxidant capacity as determined by different assays, including ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid), DPPH (2,2-diphenyl-1-picrylhydrazyl radical scavenging activity), and FRAP (ferric reducing antioxidant power) assays. The second objective of the study was the molecular characterization of native Greek C. maritimum genotypes. Great variation among genotypes was observed in terms of the antioxidant capacity, ascorbic acid content, and phenolic compounds (total phenolic content and total flavonoid content), as well as in caffeolquinic acids and flavonoids. The principal component analysis highlighted genotypes with a higher potential in antioxidants and polyphenolics. The most promising genotypes were G9 from Kefalonia, followed by G4 from Ikaria, where both clearly exhibited a similar response with high values of evaluated traits. The molecular characterization of genotypes revealed low variability and low to moderate genetic diversity between populations. Our data indicated that the rock samphire germplasm collection from the Balkan Botanic Garden of Kroussia could serve as an important source of documented genetic material and, thus, it is suggested for further investigation to provide insight regarding cultivation and agro-processing aspects, artificial selection, or plant breeding aimed at developing C. maritimum genotypes of high-bioactive value.

11.
Front Plant Sci ; 12: 713984, 2021.
Article in English | MEDLINE | ID: mdl-34484277

ABSTRACT

Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.

12.
Genes (Basel) ; 12(5)2021 05 06.
Article in English | MEDLINE | ID: mdl-34066421

ABSTRACT

Ascorbic acid (AsA) is an essential multifaceted phytonutrient for both the human diet and plant growth. Optimum levels of AsA accumulation combined with balanced redox homeostasis are required for normal plant development and defense response to adverse environmental stimuli. Notwithstanding its moderate AsA levels, tomatoes constitute a good source of vitamin C in the human diet. Therefore, the enhancement of AsA levels in tomato fruit attracts considerable attention, not only to improve its nutritional value but also to stimulate stress tolerance. Genetic regulation of AsA concentrations in plants can be achieved through the fine-tuning of biosynthetic, recycling, and transport mechanisms; it is also linked to changes in the whole fruit metabolism. Emerging evidence suggests that tomato synthesizes AsA mainly through the l-galactose pathway, but alternative pathways through d-galacturonate or myo-inositol, or seemingly unrelated transcription and regulatory factors, can be also relevant in certain developmental stages or in response to abiotic factors. Considering the recent advances in our understanding of AsA regulation in model and other non-model species, this review attempts to link the current consensus with novel technologies to provide a comprehensive strategy for AsA enhancement in tomatoes, without any detrimental effect on plant growth or fruit development.


Subject(s)
Ascorbic Acid/metabolism , Solanum lycopersicum/metabolism , Stress, Physiological , Ascorbic Acid/genetics , Biofortification/methods , Solanum lycopersicum/genetics , Solanum lycopersicum/standards , Plant Breeding/methods
13.
BMC Genomics ; 22(1): 341, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33980145

ABSTRACT

BACKGROUND: Summer squash (Cucurbita pepo: Cucurbitaceae) are a popular horticultural crop for which there is insufficient genomic and transcriptomic information. Gene expression atlases are crucial for the identification of genes expressed in different tissues at various plant developmental stages. Here, we present the first comprehensive gene expression atlas for a summer squash cultivar, including transcripts obtained from seeds, shoots, leaf stem, young and developed leaves, male and female flowers, fruits of seven developmental stages, as well as primary and lateral roots. RESULTS: In total, 27,868 genes and 2352 novel transcripts were annotated from these 16 tissues, with over 18,000 genes common to all tissue groups. Of these, 3812 were identified as housekeeping genes, half of which assigned to known gene ontologies. Flowers, seeds, and young fruits had the largest number of specific genes, whilst intermediate-age fruits the fewest. There also were genes that were differentially expressed in the various tissues, the male flower being the tissue with the most differentially expressed genes in pair-wise comparisons with the remaining tissues, and the leaf stem the least. The largest expression change during fruit development was early on, from female flower to fruit two days after pollination. A weighted correlation network analysis performed on the global gene expression dataset assigned 25,413 genes to 24 coexpression groups, and some of these groups exhibited strong tissue specificity. CONCLUSIONS: These findings enrich our understanding about the transcriptomic events associated with summer squash development and ripening. This comprehensive gene expression atlas is expected not only to provide a global view of gene expression patterns in all major tissues in C. pepo but to also serve as a valuable resource for functional genomics and gene discovery in Cucurbitaceae.


Subject(s)
Cucurbita , Cucurbita/genetics , Flowers/genetics , Fruit/genetics , Gene Expression Regulation, Plant , Pollination , RNA-Seq
14.
Microorganisms ; 8(11)2020 Oct 31.
Article in English | MEDLINE | ID: mdl-33142812

ABSTRACT

The aim of the study was to investigate the bacterial community diversity and structure by means of 16S rRNA gene high-throughput amplicon sequencing, in the rhizosphere and phyllosphere of halophytes and drought-tolerant plants in Mediterranean ecosystems with different soil properties. The locations of the sampled plants included alkaline, saline-sodic soils, acidic soils, and the volcanic soils of Santorini Island, differing in soil fertility. Our results showed high bacterial richness overall with Proteobacteria and Actinobacteria dominating in terms of OTUs number and indicated that variable bacterial communities differed depending on the plant's compartment (rhizosphere and phyllosphere), the soil properties and location of sampling. Furthermore, a shared pool of generalist bacterial taxa was detected independently of sampling location, plant species, or plant compartment. We conclude that the rhizosphere and phyllosphere of native plants in stressed Mediterranean ecosystems consist of common bacterial assemblages contributing to the survival of the plant, while at the same time the discrete soil properties and environmental pressures of each habitat drive the development of a complementary bacterial community with a distinct structure for each plant and location. We suggest that this trade-off between generalist and specialist bacterial community is tailored to benefit the symbiosis with the plant.

15.
Plant Physiol Biochem ; 156: 291-303, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32987259

ABSTRACT

Ascorbate oxidase (AO, EC 1.10.3.3) is a copper-containing enzyme localized at the apoplast, where it catalyzes the oxidation of ascorbic acid (AA) to dehydroascorbic acid (DHA) via monodehydroascorbic acid (MDHA) intermediate. Despite it has been extensively studied, no biological roles have been definitively ascribed. To understand the role of AO in plant metabolism, fruit growth and physiology, we suppressed AO expression in melon (Cucumis melo L.) fruit. Reduction of AO activity increased AA content in melon fruit, which is the result of repression of AA oxidation and simultaneous induction of certain biosynthetic and recycling genes. As a consequence, ascorbate redox state was altered in the apoplast. Interestingly, transgenic melon fruit displayed increased ethylene production rate coincided with elevated levels of 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (ACO, EC 1.14.17.4) activity and gene expression, which might contribute to earlier ripening. Moreover, AO suppressed transgenic melon fruit exhibited a dramatic arrest in fruit growth, due to a simultaneous decrease in fruit cell size and in plasmalemma (PM) ATPase activity. All the above, support for the first time, the in vivo AO participation in the rapid fruit growth of Cucurbitaceae and further suggest an alternative route for AA increase in ripening fruit.


Subject(s)
Ascorbate Oxidase/genetics , Ascorbic Acid/analysis , Cucurbitaceae/genetics , Gene Silencing , Cucurbitaceae/growth & development , Fruit/enzymology , Fruit/physiology , Gene Expression Regulation, Plant , Plants, Genetically Modified/growth & development
16.
Sci Rep ; 10(1): 14857, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32908201

ABSTRACT

Plant growth promoting rhizobacteria (PGPR) are able to provide cross-protection against multiple stress factors and facilitate growth of their plant symbionts in many ways. The aim of this study was to isolate and characterize rhizobacterial strains under natural conditions, associated with naturally occurring representatives of wild plant species and a local tomato cultivar, growing in differently stressed Mediterranean ecosystems. A total of 85 morphologically different rhizospheric strains were isolated; twenty-five exhibited multiple in vitro PGP-associated traits, including phosphate solubilization, indole-3-acetic acid production, and 1-aminocyclopropane-1-carboxylate deaminase activity. Whole genome analysis was applied to eight selected strains for their PGP potential and assigned seven strains to Gammaproteobacteria, and one to Bacteroidetes. The genomes harboured numerous genes involved in plant growth promotion and stress regulation. They also support the notion that the presence of gene clusters with potential PGP functions is affirmative but not necessary for a strain to promote plant growth under abiotic stress conditions. The selected strains were further tested for their ability to stimulate growth under stress. This initial screening led to the identification of some strains as potential PGPR for increasing crop production in a sustainable manner.


Subject(s)
Droughts , Plant Roots/microbiology , Rhizosphere , Salt-Tolerant Plants , Solanum lycopersicum , Bacteroidetes/physiology , Gammaproteobacteria/physiology , Greece , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Microbiota , Plant Growth Regulators/metabolism , Salt-Tolerant Plants/growth & development , Salt-Tolerant Plants/microbiology , Soil Microbiology
17.
Funct Plant Biol ; 47(7): 651-658, 2020 06.
Article in English | MEDLINE | ID: mdl-32375995

ABSTRACT

Understanding the molecular mode(s) of plant tolerance to heat stress (HS) is crucial since HS is a potential threat to sustainable agriculture and global crop production. Polyamines (PAs) seem to exert multifaceted effects in plant growth and development and responses to abiotic and biotic stresses, presumably via their homeostasis, chemical interactions and contribution to hydrogen peroxide (H2O2) cellular 'signatures'. Downregulation of the apoplastic POLYAMINE OXIDASE (PAO) gene improved thermotolerance in tobacco (Nicotiana tabacum L.) transgenics. However, in the present work we show that transgenic tobacco plants with antisense-mediated S-ADENOSYL-L-METHIONINE DECARBOXYLASE silencing (AS-NtSAMDC) exhibited enhanced sensitivity and delayed responses to HS which was accompanied by profound injury upon HS removal (recovery), as assessed by phenological, physiological and biochemical characteristics. In particular, the AS-NtSAMDC transgenics exhibited significantly reduced rate of photosynthesis, as well as enzymatic and non-enzymatic antioxidants. These transgenics suffered irreversible damage, which significantly reduced their growth potential upon return to normal conditions. These data reinforce the contribution of increased PA homeostasis to tolerance, and can move forward our understanding on the PA-mediated mechanism(s) conferring tolerance to HS that might be targeted via traditional or biotechnological breeding for developing HS tolerant plants.


Subject(s)
Hydrogen Peroxide , Nicotiana , Carboxy-Lyases , Gene Expression Regulation, Plant , Heat-Shock Response , Hydrogen Peroxide/metabolism , Plant Breeding , Nicotiana/metabolism
18.
Hortic Res ; 6: 94, 2019.
Article in English | MEDLINE | ID: mdl-31645952

ABSTRACT

Cucurbita pepo contains two cultivated subspecies, each of which encompasses four fruit-shape morphotypes (cultivar groups). The Pumpkin, Vegetable Marrow, Cocozelle, and Zucchini Groups are of subsp. pepo and the Acorn, Crookneck, Scallop, and Straightneck Groups are of subsp. ovifera. Recently, a de novo assembly of the C. pepo subsp. pepo Zucchini genome was published, providing insights into its evolution. To expand our knowledge of evolutionary processes within C. pepo and to identify variants associated with particular morphotypes, we performed whole-genome resequencing of seven of these eight C. pepo morphotypes. We report for the first time whole-genome resequencing of the four subsp. pepo (Pumpkin, Vegetable Marrow, Cocozelle, green Zucchini, and yellow Zucchini) morphotypes and three of the subsp. ovifera (Acorn, Crookneck, and Scallop) morphotypes. A high-depth resequencing approach was followed, using the BGISEQ-500 platform that enables the identification of rare variants, with an average of 33.5X. Approximately 94.5% of the clean reads were mapped against the reference Zucchini genome. In total, 3,823,977 high confidence single-nucleotide polymorphisms (SNPs) were identified. Within each accession, SNPs varied from 636,918 in green Zucchini to 2,656,513 in Crookneck, and were distributed homogeneously along the chromosomes. Clear differences between subspecies pepo and ovifera in genetic variation and linkage disequilibrium are highlighted. In fact, comparison between subspecies pepo and ovifera indicated 5710 genes (22.5%) with Fst > 0.80 and 1059 genes (4.1%) with Fst = 1.00 as potential candidate genes that were fixed during the independent evolution and domestication of the two subspecies. Linkage disequilibrium was greater in subsp. ovifera than in subsp. pepo, perhaps reflective of the earlier differentiation of morphotypes within subsp. ovifera. Some morphotype-specific genes have been localized. Our results offer new clues that may provide an improved understanding of the underlying genomic regions involved in the independent evolution and domestication of the two subspecies. Comparisons among SNPs unique to particular subspecies or morphotypes may provide candidate genes responsible for traits of high economic importance.

19.
Biochem Genet ; 57(6): 747-766, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30997627

ABSTRACT

Beans are one of the most important staple crops in the world. Runner bean (Phaseolus coccineus L.) is a small-scale agriculture crop compared to common bean (Phaseolusvulgaris). Beans have been introduced to Europe from the Central America to Europe and since then they have been scattered to different geographical regions. This has resulted in the generation of numerous local cultivars and landraces with distinguished characters and adaptive potential. To identify and characterize the underlying genomic variation of two very closely related runner bean cultivars, we performed RNA-Seq with de novo transcriptome assembly in two landraces of P. coccineus, 'Gigantes' and 'Elephantes' phenotypically distinct, differing in seed size and shape. The cleaned reads generated 37,379 and 37,774 transcripts for 'Gigantes' and 'Elephantes,' respectively. A total of 1896 DEGs were identified between the two cultivars, 1248 upregulated in 'Elephantes' and 648 upregulated in 'Gigantes.' A significant upregulation of defense-related genes was observed in 'Elephantes,' among those, numerous members of the AP2-EREBP, WRKY, NAC, and bHLH transcription factor families. In total, 3956 and 4322 SSRs were identified in 'Gigantes' and 'Elephantes,' respectively. Trinucleotide repeats were the most dominant repeat motif, accounting for 41.9% in 'Gigantes' and 40.1% in 'Elephantes' of the SSRs identified, followed by dinucleotide repeats (29.1% in both cultivars). Additionally, 19,281 putative SNPs were identified, among those 3161 were non-synonymous, thus having potential functional implications. High-confidence non-synonymous SNPs were successfully validated with an HRM assay, which can be directly adopted for P. coccineus molecular breeding. These results significantly expand the number of polymorphic markers within P. coccineus genus, enabling the robust identification of runner bean cultivars, the construction of high-resolution genetic maps, potentiating genome-wide association studies. They finally contribute to the genetic reservoir for the improvement of the closely related and intercrossable Phaseolus vulgaris.


Subject(s)
Crops, Agricultural/genetics , Genetic Variation , Genome, Plant , Phaseolus/genetics , Transcriptome , Genetic Markers , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Transcription Factors/genetics
20.
J Plant Physiol ; 218: 171-174, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28886452

ABSTRACT

Polyamines (PAs) and hydrogen peroxide (H2O2), the product of PA oxidation by polyamine oxidase (PAO), are potential players affecting plant growth, development and responses to abiotic/biotic stresses. Genetically modified Nicotiana tabacum plants with altered PA/H2O2 homeostasis due to over/underexpression of the ZmPAO gene (S-ZmPAO/AS-ZmPAO, respectively) were assessed under heat stress (HS). Underexpression of ZmPAO correlates with increased thermotolerance of the photosynthetic machinery and improved biomass accumulation, accompanied by enhanced levels of the enzymatic and non-enzymatic antioxidants, whereas ZmPAO overexpressors exhibit significant impairment of thermotolerance. These data provide important clues on PA catabolism/H2O2/thermotolerance, which merit further exploitation.


Subject(s)
Gene Expression Regulation, Plant , Nicotiana/physiology , Oxidoreductases Acting on CH-NH Group Donors/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Thermotolerance , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Polyamines/metabolism , Zea mays/genetics , Polyamine Oxidase
SELECTION OF CITATIONS
SEARCH DETAIL
...