Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Physiol Biochem ; 2024 Aug 19.
Article in English | MEDLINE | ID: mdl-39155330

ABSTRACT

Acute kidney injury is a serious public health problem worldwide, being ischemia and reperfusion (I/R) the main lesion-aggravating factor that contributes to the evolution towards chronic kidney disease. Nonetheless, intervention approaches currently available are just considered palliative options. In order to offer an alternative treatment, it is important to understand key factors involved in the development of the disease including the rescue of the affected cells and/or the release of paracrine factors that are crucial for tissue repair. Bioactive lipids such as sphingosine 1-phosphate (S1P) have significant effects on the modulation of signaling pathways involved in tissue regeneration, such as cell survival, proliferation, differentiation, and migration. The main objective of this work was to explore the protective effect of S1P using human kidney proximal tubule cells submitted to a mimetic I/R lesion, via ATP depletion. We observed that the S1P pre-treatment increases cell survival by 50% and preserves the cell proliferation capacity of injured cells. We showed the presence of different bioactive lipids notably related to tissue repair but, more importantly, we noted that the pre-treatment with S1P attenuated the ischemia-induced effects in response to the injury, resulting in higher endogenous S1P production. All receptors but S1PR3 are present in these cells and the protective and proliferative effect of S1P/S1P receptors axis occur, at least in part, through the activation of the SAFE pathway. To our knowledge, this is the first time that S1PR4 and S1PR5 are referred in these cells and also the first indication of JAK2/STAT3 pathway involvement in S1P-mediated protection in an I/R renal model.

2.
J Clin Med ; 12(9)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37176611

ABSTRACT

BACKGROUND: Childhood myelodysplastic neoplasm (cMDS) often raises concerns about an underlying germline predisposition, and its verification is necessary to guide therapeutic choice and allow family counseling. Here, we report a novel constitutional t(3;8)(p26;q21) in a child with MDS, inherited from the father, the ANKRD26 and SRP72 variants from the maternal origin, and the acquisition of molecular alterations during MDS evolution. CASE PRESENTATION: A 4-year-old girl showed repeated infections and severe neutropenia. Bone marrow presented hypocellularity with dysplastic features. The patient had a t(3;8)(p26;q21)c identified by G-banding and FISH analysis. The family nucleus investigation identified the paternal origin of the chromosomal translocation. The NGS study identified ANKRD26 and SRP72 variants of maternal origin. CGH-array analysis detected alterations in PRSS3P2 and KANSL genes. Immunohistochemistry showed abnormal p53 expression during the MDS evolution. CONCLUSION: This study shows for the first time, cytogenetic and genomic abnormalities inherited from the father and mother, respectively, and their clinical implications. It also shows the importance of investigating patients with constitutional cytogenetic alterations and/or germline variants to provide information to their family nucleus for genetic counseling and understanding of the pathogenesis of childhood MDS.

SELECTION OF CITATIONS
SEARCH DETAIL