Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chronobiol Int ; 40(9): 1279-1290, 2023 09 02.
Article in English | MEDLINE | ID: mdl-37781880

ABSTRACT

Circadian rhythm disruption is a core symptom of bipolar disorder (BD), also reflected in altered patterns of melatonin release. Reductions of grey matter (GM) volumes are well documented in BD. We hypothesized that levels and timing of melatonin secretion in bipolar depression could be associated with depressive psychopathology and brain GM integrity. The onset of melatonin secretion under dim light conditions (DLMO) and the amount of time between DLMO and midsleep (i.e. phase angle difference; PAD) were used as circadian rhythm markers. To study the time course of melatonin secretion, an exponential curve fitting the melatonin values was calculated, and the slope coefficients (SLP) were obtained for each participant. Significant differences were found between HC and BD in PAD measures and melatonin profiles. Correlations between PAD and depressive psychopathology were identified. Melatonin secretion patterns were found to be associated with GM volumes in the Striatum and Supramarginal Gyrus in BD. Our findings emphasized the role of melatonin secretion role as a biological marker of circadian synchronization in bipolar depression and provided a novel insight for a link between melatonin release and brain structure.


Subject(s)
Bipolar Disorder , Melatonin , Humans , Circadian Rhythm , Brain , Cognition , Sleep
2.
Psychol Med ; : 1-11, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36846964

ABSTRACT

BACKGROUND: Obesity is highly prevalent and disabling, especially in individuals with severe mental illness including bipolar disorders (BD). The brain is a target organ for both obesity and BD. Yet, we do not understand how cortical brain alterations in BD and obesity interact. METHODS: We obtained body mass index (BMI) and MRI-derived regional cortical thickness, surface area from 1231 BD and 1601 control individuals from 13 countries within the ENIGMA-BD Working Group. We jointly modeled the statistical effects of BD and BMI on brain structure using mixed effects and tested for interaction and mediation. We also investigated the impact of medications on the BMI-related associations. RESULTS: BMI and BD additively impacted the structure of many of the same brain regions. Both BMI and BD were negatively associated with cortical thickness, but not surface area. In most regions the number of jointly used psychiatric medication classes remained associated with lower cortical thickness when controlling for BMI. In a single region, fusiform gyrus, about a third of the negative association between number of jointly used psychiatric medications and cortical thickness was mediated by association between the number of medications and higher BMI. CONCLUSIONS: We confirmed consistent associations between higher BMI and lower cortical thickness, but not surface area, across the cerebral mantle, in regions which were also associated with BD. Higher BMI in people with BD indicated more pronounced brain alterations. BMI is important for understanding the neuroanatomical changes in BD and the effects of psychiatric medications on the brain.

3.
Article in English | MEDLINE | ID: mdl-35843368

ABSTRACT

BACKGROUND: Dysfunctional glutamatergic neurotransmission has been proposed both, as a biological underpinning of mood disorder and as a target for rapid-acting antidepressant treatments. Total sleep deprivation and light therapy (TSD + LT) can prompt antidepressant response in drug-resistant bipolar depression. Here we explored the effects of TSD + LT on dorsolateral prefrontal cortex (DLPFC) glutamate and/or glutamine+glutamate (Glx) levels. METHODS: We studied single voxel 1H-MRS measures of DLPFC Glu and Glx levels of 48 healthy participants and 55 inpatients with a major depressive episode in course of Bipolar Disorder, a subset of which (N = 23) underwent three cycles of repeated TSD + LT and were evaluated before and after treatment. Treatment effects of mood and on Glu and Glx concentrations were analyzed in the context of the Generalized Linear Model (GLM), correcting for age, sex and ongoing lithium treatment. RESULTS: Higher concentration of Glu (adjusted Z = -2189, p = 0,0285) and Glx (adjusted Z = -3,13, p = 0,0017) were observed in BD patients compared to HC. Treatment caused a significant rapid reduction of depressive symptom severity over time (F = 63.98, p < 0.01). Change in depression levels after TSD + LT treatment was significantly influenced by delta change in Glu levels (LR χ2 = 4.619, p = 0.0316) and in Glx levels (LR χ2 = 4.486, p = 0.0341). CONCLUSION: A reduction in Glu and Glx levels associated with depression could contribute to the mechanism of action of TSD + LT, directly acting on glutamatergic neurons, or to the interaction between the glutamatergic system and dopamine (DA) and serotonin (5-HT) levels, known to be targeted by TSD. This is in line with several studies showing a glutamatergic modulation effects of antidepressants and mood stabilizing agents. This finding deepens our understanding of antidepressant effect of chronoterapeutics.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Drug Chronotherapy , Glutamic Acid , Glutamine , Humans , Prefrontal Cortex/diagnostic imaging , Proton Magnetic Resonance Spectroscopy
4.
Biol Psychiatry ; 91(6): 582-592, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34809987

ABSTRACT

BACKGROUND: Bipolar disorder (BD) is associated with cortical and subcortical structural brain abnormalities. It is unclear whether such alterations progressively change over time, and how this is related to the number of mood episodes. To address this question, we analyzed a large and diverse international sample with longitudinal magnetic resonance imaging (MRI) and clinical data to examine structural brain changes over time in BD. METHODS: Longitudinal structural MRI and clinical data from the ENIGMA (Enhancing Neuro Imaging Genetics through Meta Analysis) BD Working Group, including 307 patients with BD and 925 healthy control subjects, were collected from 14 sites worldwide. Male and female participants, aged 40 ± 17 years, underwent MRI at 2 time points. Cortical thickness, surface area, and subcortical volumes were estimated using FreeSurfer. Annualized change rates for each imaging phenotype were compared between patients with BD and healthy control subjects. Within patients, we related brain change rates to the number of mood episodes between time points and tested for effects of demographic and clinical variables. RESULTS: Compared with healthy control subjects, patients with BD showed faster enlargement of ventricular volumes and slower thinning of the fusiform and parahippocampal cortex (0.18

Subject(s)
Bipolar Disorder , Adult , Bipolar Disorder/pathology , Brain/diagnostic imaging , Brain/pathology , Cerebral Cortical Thinning , Female , Humans , Magnetic Resonance Imaging , Male , Mania , Middle Aged , Multicenter Studies as Topic , Neuroimaging , Young Adult
5.
Bipolar Disord ; 24(5): 509-520, 2022 08.
Article in English | MEDLINE | ID: mdl-34894200

ABSTRACT

AIMS: Rates of obesity have reached epidemic proportions, especially among people with psychiatric disorders. While the effects of obesity on the brain are of major interest in medicine, they remain markedly under-researched in psychiatry. METHODS: We obtained body mass index (BMI) and magnetic resonance imaging-derived regional cortical thickness, surface area from 836 bipolar disorders (BD) and 1600 control individuals from 14 sites within the ENIGMA-BD Working Group. We identified regionally specific profiles of cortical thickness using K-means clustering and studied clinical characteristics associated with individual cortical profiles. RESULTS: We detected two clusters based on similarities among participants in cortical thickness. The lower thickness cluster (46.8% of the sample) showed thinner cortex, especially in the frontal and temporal lobes and was associated with diagnosis of BD, higher BMI, and older age. BD individuals in the low thickness cluster were more likely to have the diagnosis of bipolar disorder I and less likely to be treated with lithium. In contrast, clustering based on similarities in the cortical surface area was unrelated to BD or BMI and only tracked age and sex. CONCLUSIONS: We provide evidence that both BD and obesity are associated with similar alterations in cortical thickness, but not surface area. The fact that obesity increased the chance of having low cortical thickness could explain differences in cortical measures among people with BD. The thinner cortex in individuals with higher BMI, which was additive and similar to the BD-associated alterations, may suggest that treating obesity could lower the extent of cortical thinning in BD.


Subject(s)
Bipolar Disorder , Bipolar Disorder/diagnosis , Body Mass Index , Cluster Analysis , Humans , Magnetic Resonance Imaging , Obesity/complications , Obesity/diagnostic imaging , Temporal Lobe/pathology
6.
Mol Psychiatry ; 26(11): 6806-6819, 2021 11.
Article in English | MEDLINE | ID: mdl-33863996

ABSTRACT

Individuals with bipolar disorders (BD) frequently suffer from obesity, which is often associated with neurostructural alterations. Yet, the effects of obesity on brain structure in BD are under-researched. We obtained MRI-derived brain subcortical volumes and body mass index (BMI) from 1134 BD and 1601 control individuals from 17 independent research sites within the ENIGMA-BD Working Group. We jointly modeled the effects of BD and BMI on subcortical volumes using mixed-effects modeling and tested for mediation of group differences by obesity using nonparametric bootstrapping. All models controlled for age, sex, hemisphere, total intracranial volume, and data collection site. Relative to controls, individuals with BD had significantly higher BMI, larger lateral ventricular volume, and smaller volumes of amygdala, hippocampus, pallidum, caudate, and thalamus. BMI was positively associated with ventricular and amygdala and negatively with pallidal volumes. When analyzed jointly, both BD and BMI remained associated with volumes of lateral ventricles  and amygdala. Adjusting for BMI decreased the BD vs control differences in ventricular volume. Specifically, 18.41% of the association between BD and ventricular volume was mediated by BMI (Z = 2.73, p = 0.006). BMI was associated with similar regional brain volumes as BD, including lateral ventricles, amygdala, and pallidum. Higher BMI may in part account for larger ventricles, one of the most replicated findings in BD. Comorbidity with obesity could explain why neurostructural alterations are more pronounced in some individuals with BD. Future prospective brain imaging studies should investigate whether obesity could be a modifiable risk factor for neuroprogression.


Subject(s)
Bipolar Disorder , Amygdala , Body Mass Index , Brain , Humans , Magnetic Resonance Imaging/methods
7.
J Affect Disord ; 274: 1049-1056, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32663931

ABSTRACT

BACKGROUND: Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with bipolar disorder (BD). The chronotherapeutic combination of repeated total sleep deprivation and morning light therapy (TSD+LT) can acutely reverse depressive symptoms in approximately 60% of patients, and it has been confirmed as a model antidepressant treatment to investigate the neurobiological correlates of rapid antidepressant response. METHODS: We tested if changes in DTI measures of WM microstructure could parallel antidepressant response in a sample of 44 patients with a major depressive episode in course of BD, treated with chronoterapeutics for one week. We used both a tract-wise and a voxel-wise approach for the whole-brain extraction of DTI measures of WM microstructure: axial (AD), radial (RD), and mean diffusivity (MD), and fractional anisotropy (FA). RESULTS: Compared to baseline level, at one-week follow up we observed a significant increase in average FA measures paralleled by a significant decrease in MD measures of several WM tracts including cingulum, corpus callosum, corona radiata, cortico-spinal tract, internal capsule, fornix and uncinate fasciculus. The degree of change was associated to clinical response. CONCLUSIONS: This is the first study to show changes of individual DTI measures of WM microstructure in response to antidepressant treatment in BD. Our results add new evidence to warrant a role for chronotherapeutics as a first-line treatment for bipolar depression and contribute identifying generalizable neuroimaging-based biomarkers of antidepressant response.


Subject(s)
Bipolar Disorder , Depressive Disorder, Major , White Matter , Anisotropy , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/drug therapy , Brain/diagnostic imaging , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/drug therapy , Diffusion Tensor Imaging , Humans , White Matter/diagnostic imaging
9.
Neuropsychopharmacology ; 44(13): 2285-2293, 2019 12.
Article in English | MEDLINE | ID: mdl-31434102

ABSTRACT

Fronto-limbic white matter (WM) abnormalities are assumed to lie at the heart of the pathophysiology of bipolar disorder (BD); however, diffusion tensor imaging (DTI) studies have reported heterogeneous results and it is not clear how the clinical heterogeneity is related to the observed differences. This study aimed to identify WM abnormalities that differentiate patients with BD from healthy controls (HC) in the largest DTI dataset of patients with BD to date, collected via the ENIGMA network. We gathered individual tensor-derived regional metrics from 26 cohorts leading to a sample size of N = 3033 (1482 BD and 1551 HC). Mean fractional anisotropy (FA) from 43 regions of interest (ROI) and average whole-brain FA were entered into univariate mega- and meta-analyses to differentiate patients with BD from HC. Mega-analysis revealed significantly lower FA in patients with BD compared with HC in 29 regions, with the highest effect sizes observed within the corpus callosum (R2 = 0.041, Pcorr < 0.001) and cingulum (right: R2 = 0.041, left: R2 = 0.040, Pcorr < 0.001). Lithium medication, later onset and short disease duration were related to higher FA along multiple ROIs. Results of the meta-analysis showed similar effects. We demonstrated widespread WM abnormalities in BD and highlighted that altered WM connectivity within the corpus callosum and the cingulum are strongly associated with BD. These brain abnormalities could represent a biomarker for use in the diagnosis of BD. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.


Subject(s)
Bipolar Disorder/pathology , Brain/pathology , White Matter/pathology , Adult , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Corpus Callosum/diagnostic imaging , Corpus Callosum/pathology , Diffusion Tensor Imaging , Female , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/pathology , White Matter/diagnostic imaging
10.
J Affect Disord ; 249: 175-182, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30772745

ABSTRACT

BACKGROUND: Cognitive deficits are a core feature of bipolar disorder (BD), and persist during the euthymic phase. White matter (WM) microstructural abnormalities are widely considered a structural marker of BD. Features of illness chronicity, such as illness duration and number of mood episodes, have been associated with worsening of both clinical profile and brain structural alterations. This study examined the role of WM integrity as a possible mediator between illness duration and cognitive performances in a sample of BD patients. METHODS: We assessed 88 inpatients affected by a depressive episode in course of type I BD for verbal memory, visual memory, working memory, visuospatial constructional abilities, psychomotor coordination, executive functions, processing speed, and verbal fluency. White matter integrity was evaluated through FA measurements derived using the Enhancing Neuro Imaging Genetics Through Meta-Analysis (ENIGMA)-DTI protocol. RESULTS: The effect of illness duration on processing speed, verbal memory, and visual memory was mediated by the FA values of bilateral anterior corona radiata, bilateral corona radiata, genu of corpus callosum, and fornix, adjusting for age, sex, education and lithium treatment (p < 0.05). LIMITATIONS: Potential interaction factors were not examined in this study. CONCLUSIONS: This is the first study to show the role of WM integrity as a mediator of the negative effect of illness duration on cognitive performances. Our data provide new insight into the neuroprogressive hypothesis of BD.


Subject(s)
Bipolar Disorder/pathology , Cognitive Dysfunction/pathology , Depression/pathology , White Matter/pathology , Adult , Bipolar Disorder/psychology , Case-Control Studies , Cognition , Cognitive Dysfunction/etiology , Corpus Callosum/pathology , Depression/etiology , Executive Function , Female , Humans , Male , Memory, Short-Term , Middle Aged
11.
J Affect Disord ; 218: 380-387, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28500983

ABSTRACT

BACKGROUND: Alteration of circadian rhythms and sleep disruption are prominent trait-like features of bipolar disorder (BD). Diffusion tensor imaging (DTI) measures suggest a widespread alteration of white matter (WM) microstructure in patients with BD. Sleep promotes myelination and oligodendrocyte precursor cells proliferation. We hypothesized a possible association between DTI measures of WM microstructure and sleep quantity measures in BD. METHODS: We studied 69 inpatients affected by a depressive episode in course of type I BD. We used whole brain tract-based spatial statistics on DTI measures of WM microstructure: axial, radial, and mean diffusivity (AD, RD, MD), and fractional anisotropy (FA). Self-assessed measures of time asleep (TA) and total sleep time (TST) were extracted from the Pittsburgh Sleep Quality Index (PSQI). Actigraphic recordings were performed on a subsample of 23 patients. RESULTS: We observed a positive correlation of DTI measures of FA with actigraphic measures of TA and TST, and with PSQI measure of TA. DTI measures of RD inversely associated with actigraphic measure of TA, and with PSQI measures of TA and TST. Several WM tracts were involved, including corpus callosum, cyngulate gyrus, uncinate fasciculus, left superior and inferior longitudinal and fronto-occipital fasciculi, thalamic radiation, corona radiata, retrolenticular part of internal capsule and corticospinal tract. LIMITATIONS: The study is correlational in nature, and no conclusion about a causal connection can be drawn. CONCLUSIONS: Reduced FA with increased RD and MD indicate higher water diffusivity associated with less organized myelin and/or axonal structures. Our findings suggest an association between sleep disruption and these measures of brain microstructure in specific tracts contributing to the functional connectivity in BD.


Subject(s)
Bipolar Disorder/pathology , Depression/pathology , Diffusion Tensor Imaging/methods , Sleep , White Matter/pathology , Adult , Anisotropy , Bipolar Disorder/diagnostic imaging , Bipolar Disorder/psychology , Brain/diagnostic imaging , Chronobiology Disorders/diagnostic imaging , Chronobiology Disorders/pathology , Chronobiology Disorders/psychology , Corpus Callosum , Depression/diagnostic imaging , Depression/psychology , Female , Humans , Male , Middle Aged , Time Factors , White Matter/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...