Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 10(9): 230437, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37680500

ABSTRACT

Carnivora with naturally small home ranges readily adjust to the evolutionarily new environment of captivity, but wider-ranging species seem prone to stress. Understanding why would advance both collection planning and enclosure design. We therefore investigated which aspects of wide-ranging lifestyles are key. We identified eight correlates of home range size (reflecting energetic needs, movement, intra-specific interactions, and itinerant lifestyles). We systematically assessed whether these correlates predict welfare better than range size per se, using data on captive juvenile mortality (from 13 518 individuals across 42 species) and stereotypic route-tracing (456 individuals, 27 species). Naturally itinerant lifestyles (quantified via ratios of daily to annual travel distances) were found to confer risk, predicting greater captive juvenile losses and stereotypic time-budgets. This finding advances our understanding of the evolutionary basis for welfare problems in captive Carnivora, helping explain why naturally sedentary species (e.g. American mink) may breed even in intensive farm conditions, while others (e.g. polar bears, giant pandas) can struggle even in modern zoos and conservation breeding centres. Naturally itinerant lifestyles involve decision-making, and strategic shifts between locations, suggesting that supplying more novelty, cognitive challenge and/or opportunities for control will be effective ways to meet these animals' welfare needs in captivity.

4.
Proc Biol Sci ; 288(1960): 20211952, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34610768

ABSTRACT

Understanding why some species thrive in captivity, while others struggle to adjust, can suggest new ways to improve animal care. Approximately half of all Psittaciformes, a highly threatened order, live in zoos, breeding centres and private homes. Here, some species are prone to behavioural and reproductive problems that raise conservation and ethical concerns. To identify risk factors, we analysed data on hatching rates in breeding centres (115 species, 10 255 pairs) and stereotypic behaviour (SB) in private homes (50 species, 1378 individuals), using phylogenetic comparative methods (PCMs). Small captive population sizes predicted low hatch rates, potentially due to genetic bottlenecks, inbreeding and low availability of compatible mates. Species naturally reliant on diets requiring substantial handling were most prone to feather-damaging behaviours (e.g. self-plucking), indicating inadequacies in the composition or presentation of feed (often highly processed). Parrot species with relatively large brains were most prone to oral and whole-body SB: the first empirical evidence that intelligence can confer poor captive welfare. Together, results suggest that more naturalistic diets would improve welfare, and that intelligent psittacines need increased cognitive stimulation. These findings should help improve captive parrot care and inspire further PCM research to understand species differences in responses to captivity.


Subject(s)
Parrots , Animals , Animals, Zoo , Breeding , Humans , Intelligence , Phylogeny
5.
Animals (Basel) ; 10(8)2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32824807

ABSTRACT

Excessive body mass, i.e., being overweight or obese, is a health concern associated with issues such as reduced fertility and lifespan. Some lemur species are prone to extreme weight gain in captivity, yet others are not. To better understand species- and individual-level effects on susceptibility to captive weight gain, we use two complementary methods: phylogenetic comparative methods to examine ecological explanations for susceptibility to weight gain across species, and epidemiological approaches to examine demographic and environment effects within species. Data on body masses and living conditions were collected using a survey, yielding useable data on 675 lemurs representing 13 species from 96 collections worldwide. Data on species-typical wild ecology for comparative analyses came from published literature and climate databases. We uncovered one potential ecological risk factor: species adapted to greater wild food resource unpredictability tended to be more prone to weight gain. Our epidemiological analyses on the four best-sampled species revealed four demographic and one environmental risk factors, e.g., for males, being housed with only fixed climbing structures. We make practical recommendations to help address weight concerns, and describe future research including ways to validate the proxy we used to infer body condition.

SELECTION OF CITATIONS
SEARCH DETAIL
...