Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(6): 8652-8666, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299312

ABSTRACT

Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials.

2.
Philos Trans A Math Phys Eng Sci ; 377(2137)2018 Dec 10.
Article in English | MEDLINE | ID: mdl-30530536

ABSTRACT

Imaging subsurface rock formations or geological objects like oil and gas reservoirs, mineral deposits, cavities or even magmatic plumbing systems under active volcanoes has been for many years a major quest of geoscientists. Since these subsurface objects cannot be observed directly, different indirect methods have been developed. These methods are all based on variations of certain physical properties of the subsurface materials that can be detected from the ground surface or from boreholes. To determine the density distribution, a new imaging technique using cosmic-ray muon detectors deployed in a borehole has been developed and a first prototype of a borehole muon detector successfully tested. In addition to providing a static image of the subsurface density in three dimensions (or three-dimensional tomography), borehole muography can also inform on the variations of density with time, which recently became of major importance with the injection of large volumes of fluids, mainly water and CO2, in porous subsurface reservoirs (e.g. aquifer storage and recovery, wastewater disposal, enhanced oil recovery and carbon sequestration). This raises several concerns about the risk of leakage and the mechanical integrity of the reservoirs. Determining the field scale induced displacement of fluids by geophysical methods like muography is thus a priority.This article is part of the Theo Murphy meeting issue 'Cosmic-ray muography'.

SELECTION OF CITATIONS
SEARCH DETAIL
...