Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 103: 109843, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31349461

ABSTRACT

A series of germanium (Ge)-containing glasses were synthesized based on a starting glass composition of SiO2-ZnO-CaO-SrO-P2O5. Additions of GeO2 (6 and 12 mol%) were incorporated at the expense of SiO2, which retained the amorphous character, and each glass was processed to present similar particle size and surface area. Glass characterization using x-ray photoelectron spectroscopy (XPS) and magic angle spinning nuclear magnetic resonance (MAS-NMR) determined that the addition of GeO2 increased the fraction of lower Q-speciation and subsequently the concentration of non-bridging oxygens (NBO). Glass Polyalkenoate Cements (GPC) were formulated from each glass with 40, 50 and 60 wt% PAA, and presented time dependent solubility profiles (1, 10, 100, 1000 h) for the release of Si4+ (4-140 mg/l), Ca2+ (1-8 mg/l), Zn2+ (<6 mg/l), Sr2+ (2-37 mg/l), PO43- (2-43 mg/l) and Ge4+ (20-911 mg/l) and attained pH values close to 7.5 after 1000 h. Ge-GPCs containing 40 wt% polyacrylic acid (PAA) presented appropriate working time (Tw) and setting times (Ts), and the corresponding compressive strengths ranged from (14-30 MPa). The Ge-GPCs (40, 50 wt%) presented a linear increase (R2-0.99) with respect to time. Simulated Body Fluid (SBF) testing resulted in the Ge-GPCs encouraging the precipitation of crystalline hydroxyapatite on the GPC surface, more evidently after 100 and 1000 h incubation.


Subject(s)
Body Fluids/chemistry , Germanium/chemistry , Glass Ionomer Cements/chemistry , Glass/chemistry , Humans , Solubility
2.
Mater Sci Eng C Mater Biol Appl ; 58: 918-26, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26478387

ABSTRACT

Applying sol gel based coatings to orthopedic metallic implant materials can significantly improve their properties and lifespan in vivo. For this work, niobium (Nb2O5) and titanium (TiO2) oxides were prepared via solution processing in order to determine the effect of atomic arrangement (amorphous/crystalline) on bioactivity. Thermal evaluation on the synthesized materials identified an endotherm for Nb2O5 at 75 °C with 40% weight loss below 400 °C, and minimal weight loss between 400 and 850 °C. Regarding TiO2 an endotherm was present at 92 °C with 25% weight loss below 400 °C, and 4% between 400 and 850 °C. Phase evolution was determined using High Temperature X-ray Diffraction (HT-XRD) where amorphous-Nb2O5 (450 °C), hexagonal-Nb2O5 (525 °C), orthorhombic-Nb2O5 (650 °C), amorphous-TiO2 (275 °C) and tetragonal TiO2 (500 °C) structures were produced. Simulated body fluid (SBF) testing was conducted over 1, 7 and 30 days and resulted in positive chemical and morphological changes for crystalline Nb2O5 (525 °C) and TiO2 (500 °C) after 30 days of incubation. Rod-like CaP deposits were observed on the surfaces using Scanning Electron Microscopy (FE-SEM) and Grazing Incidence-X-ray Diffraction (GI-XRD) shows that the deposits were X-ray amorphous. Cell viability was higher with the TiO2 (122%) samples when compared to the growing cell population while Nb2O5 samples exhibited a range of viability (64-105%), partially dependent on materials atomic structure.


Subject(s)
Coated Materials, Biocompatible/chemistry , Niobium/chemistry , Oxides/chemistry , Titanium/chemistry , Animals , Cell Line , Cell Survival/drug effects , Coated Materials, Biocompatible/toxicity , Mice , Microscopy, Electron, Scanning , Niobium/toxicity , Oxides/toxicity , Prostheses and Implants , Spectrum Analysis, Raman , Surface Properties , Thermogravimetry , Titanium/toxicity , X-Ray Diffraction
3.
J Biomater Appl ; 30(4): 450-62, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26088293

ABSTRACT

Silver (Ag) coatings have been incorporated into many medical materials due to its ability to eradicate harmful microbes. In this study, glass microspheres (SiO2-Na2O-CaO-Al2O3) were synthesized and employed as substrates to investigate the effect Ag coating has on glass solubility and the subsequent biological effects. Initially, glasses were amorphous with a glass transition point (T(g)) of 605℃ and microspheres were spherical with a mean particle diameter of 120 µm (±27). The Ag coating was determined to be crystalline in nature and its presence was confirmed using scanning electron microscopy and X-ray photoelectron spectroscopy. Ion release determined that Ag-coated (Ag-S) microspheres increased the Na(+) release rate but slightly reduced the Ca(2+) and Si(4+) release compared to an uncoated control (UC-S). Additionally, the Ag-S reduced the pH to just above neutral (7.3-8.5) compared to the UC-S (7.7-9.1). Antibacterial testing determined significant reductions in planktonic Escherichia coli (p = 0.000), Staphylococcus epidermidis (p = 0.000) and Staphylococcus aureus (p = 0.000) growth as a function of the presence of Ag and with respect to maturation (1, 7, and 30 days). Testing for toxicity levels using L929 Fibroblasts determined higher cell viability for the Ag-S at lower concentrations (5 µg/ml); in addition, no significant reduction in cell viability was observed with higher concentrations (15, 30 µg/ml).


Subject(s)
Anti-Bacterial Agents/chemistry , Coated Materials, Biocompatible/chemistry , Glass/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Bacterial Infections/prevention & control , Cell Line , Coated Materials, Biocompatible/pharmacology , Escherichia coli/drug effects , Humans , Microspheres , Silver/pharmacology , Solubility , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , X-Ray Diffraction
4.
J Mater Sci Mater Med ; 26(2): 85, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25644099

ABSTRACT

This study was conducted to determine the influence that network modifiers, sodium (Na+) and strontium (Sr2+), have on the solubility of a SiO2-TiO2-CaO-Na2O/SrO bioactive glass. Glass characterization determined each composition had a similar structure, i.e. bridging to non-bridging oxygen ratio determined by X-ray photoelectron spectroscopy. Magic angle spinning nuclear magnetic resonance (MAS-NMR) confirmed structural similarities as each glass presented spectral shifts between -84 and -85 ppm. Differential thermal analysis and hardness testing revealed higher glass transition temperatures (Tg 591-760 °C) and hardness values (2.4-6.1 GPa) for the Sr2+ containing glasses. Additionally the Sr2+ (~250 mg/L) containing glasses displayed much lower ion release rates than the Na+ (~1,200 mg/L) containing glass analogues. With the reduction in ion release there was an associated reduction in solution pH. Cytotoxicity and cell adhesion studies were conducted using MC3T3 Osteoblasts. Each glass did not significantly reduce cell numbers and osteoblasts were found to adhere to each glass surface.


Subject(s)
Biocompatible Materials/chemistry , Glass/chemistry , 3T3 Cells , Animals , Biocompatible Materials/toxicity , Calcium Compounds/chemistry , Cell Adhesion , Cell Survival/drug effects , Magnetic Resonance Spectroscopy , Materials Testing , Mice , Osteoblasts/cytology , Osteoblasts/drug effects , Oxides/chemistry , Photoelectron Spectroscopy , Sodium/chemistry , Sodium Compounds/chemistry , Solubility , Spectrum Analysis, Raman , Strontium/chemistry , Surface Properties , Titanium/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...