Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioact Mater ; 4: 215-223, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31236524

ABSTRACT

In this work, we fabricated and characterized bioactive 3D glass-ceramic scaffolds with inherent antibacterial properties. The sol-gel (solution-gelation) technique and the sacrificial template method were applied for the fabrication of 3D highly porous scaffolds in the 58.6SiO2 - 24.9CaO - 7.2P2O5 - 4.2Al2O3 - 1.5Na2O -1.5K2O - 2.1Ag2O system (Ag-BG). This system is known for its advanced bioactive and antibacterial properties. The fabrication of 3D scaffolds has potential applications that impact tissue engineering. The study of the developed scaffolds from macro-characteristics to nano-, revealed a strong correlation between the macroscale properties such as antibacterial action, bioactivity with the microstructural characteristics such as elemental analysis, crystallinity. Elemental homogeneity, morphological, and microstructural characteristics of the scaffolds were studied by scanning electron microscopy associated with energy dispersive spectroscopy (SEM-EDS), transmittance electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and UV-visible spectroscopy methods. The compressive strength of the 3D scaffolds was measured within the range of values for glass-ceramic scaffolds with similar compositions, porosity, and pore size. The capability of the scaffolds to form an apatite-like phase was tested by immersing the scaffolds in simulated body fluid (SBF) and the antibacterial response against methicillin-resistant Staphylococcus aureus (MRSA) was studied. The formation of an apatite phase was observed after two weeks of immersion in SBF and the anti-MRSA effect occurs after both direct and indirect exposure.

2.
Sci Technol Adv Mater ; 17(1): 200-209, 2016.
Article in English | MEDLINE | ID: mdl-27877870

ABSTRACT

CuAlO2 has been examined as a potential luminescent material by substituting Eu for Al cations in the delafossite structure. CuAlO2:Eu3+ nanofibers have been prepared via electrospinning for the ease of mitigating synthesis requirements and for future optoelectronics and emerging applications. Single-phase CuAlO2 fibers could be obtained at a temperature of 1100 °C in air. The Eu was successfully doped in the delafossite structure and two strong emission bands at ~405 and 610 nm were observed in the photoluminescence spectra. These bands are due to the intrinsic near-band-edge transition of CuAlO2 and the f-f transition of the Eu3+ activator, respectively. Further electrical characterization indicated that these fibers exhibit semiconducting behavior and the introduction of Eu could act as band-edge modifiers, thus changing the thermal activation energies. In light of this study, CuAlO2:Eu3+ fibers with both strong photoluminescence and p-type conductivity could be produced by tailoring the rare earth doping concentrations.

3.
J Biomed Mater Res B Appl Biomater ; 104(8): 1703-1712, 2016 11.
Article in English | MEDLINE | ID: mdl-26344203

ABSTRACT

Titanium (Ti4+ ) containing materials have been widely used in medical applications due to its associated bioactivity in vivo. This study investigates the replacement of Si4+ with Ti4+ within the system SiO2 -Na2 O-CaO-P2 O5 to determine its influence on glass structure. This strategy was conducted in order to control the glass solubility to further improve the cellular response. Ti4+ incorporation was found to have little influence on the glass transition temperature (Tg = 520 ± 8°C) and magic angle spinning-nuclear magnetic resonance (MAS-NMR) shifts (-80 ppm) up to additions of 18 wt %. However, at 30 wt % the Tg increased to 600°C and MAS-NMR spectra shifted to -88 ppm. There was also an associated reduction in glass solubility as a function of Ti4+ incorporation as determined by inductively coupled plasma optical emission spectroscopy where Si4+ (1649-44 mg/L) and Na+ (892-36 mg/L) levels greatly reduced while Ca2+ (3-5 mg/L) and PO43- (2-7 mg/L) levels remained relatively unchanged. MC3T3 osteoblasts were used for cell culture testing and it was determined that the Ti4+ glasses increased cell viability and also facilitated greater osteoblast adhesion and proliferation to the glass surface compared to the control glass. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1703-1712, 2016.


Subject(s)
Ceramics , Materials Testing , Osteoblasts/metabolism , Titanium , Animals , Cell Line , Ceramics/chemistry , Ceramics/pharmacokinetics , Ceramics/pharmacology , Mice , Osteoblasts/cytology , Titanium/chemistry , Titanium/pharmacokinetics , Titanium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...