Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 51(38): 8010-3, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25846495

ABSTRACT

Here, we report a ground-state interaction between the positively charged cationic porphyrin and the negatively charged carboxylate groups of the thiol ligands on the surface of CdTe quantum dots (QDs), leading to the formation of a stable nanoassembly between the two components. Our time-resolved data clearly demonstrate that we can dramatically tune the intersystem crossing (ISC) and the triplet state lifetime of porphyrin by changing the size of the QDs in the nanoassembly.

2.
J Phys Chem Lett ; 6(19): 3884-90, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26722888

ABSTRACT

In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.

3.
Article in English | MEDLINE | ID: mdl-19251510

ABSTRACT

Thin films of ferroelectric strontium-doped lead zirconate titanate [PSZT, (Pb(0.92)Sr(0.08))(Zr(0.65)Ti(0.35))O(3)] deposited by RF magnetron sputtering have been analyzed by in situ analysis techniques. The in situ techniques employed for this study include micro-Raman spectroscopy and X-ray diffraction (XRD), and variations in thin film structure and orientations for temperatures up to 350 degrees C and 750 degrees C for the respective techniques have been studied. The samples analyzed were PSZT thin films deposited on platinum-coated silicon substrates at either room temperature or at 750 degrees C. In situ measurements using micro-Raman spectroscopy and XRD techniques have been used to identify the Curie point for poly-crystalline PSZT thin films and to determine the temperature-activating significant grain growth for room-temperature-deposited PSZT thin films. To study the presence of hysteresis, analysis was carried out during both temperature ramp-up and ramp-down cycles. Raman measurements showed expected bands (albeit weak), and the in situ measurements have detected variations in the crystal structure of the thin film samples, with negligible variations between the heating and cooling cycles. A combination of the Raman and XRD results has shown that the temperature-activating significant grain growth for the room-temperature-deposited films is about 275 degrees C and the Curie point lies between 325 and 400 degrees C. This relatively high Curie point makes these films suitable for wide temperature range applications.


Subject(s)
Lead/chemistry , Oxides/chemistry , Strontium/chemistry , Titanium/chemistry , Zirconium/chemistry , Platinum/chemistry , Spectrum Analysis, Raman , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...