Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 25(20)2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33053854

ABSTRACT

This review presents the main properties of hydroxycinnamic acid (HCA) derivatives and their potential application as agents for the prevention and treatment of neurodegenerative diseases. It is partially focused on the successful use of these compounds as inhibitors of amyloidogenic transformation of proteins. Firstly, the prerequisites for the emergence of interest in HCA derivatives, including natural compounds, are described. A separate section is devoted to synthesis and properties of HCA derivatives. Then, the results of molecular modeling of HCA derivatives with prion protein as well as with α-synuclein fibrils are summarized, followed by detailed analysis of the experiments on the effect of natural and synthetic HCA derivatives, as well as structurally similar phenylacetic and benzoic acid derivatives, on the pathological transformation of prion protein and α-synuclein. The ability of HCA derivatives to prevent amyloid transformation of some amyloidogenic proteins, and their presence not only in food products but also as natural metabolites in human blood and tissues, makes them promising for the prevention and treatment of neurodegenerative diseases of amyloid nature.


Subject(s)
Amyloidogenic Proteins/chemistry , Coumaric Acids/chemical synthesis , Coumaric Acids/pharmacology , alpha-Synuclein/chemistry , Animals , Coumaric Acids/chemistry , Humans , Neurodegenerative Diseases/metabolism , Protein Aggregation, Pathological/metabolism
2.
Mol Neurobiol ; 57(10): 4018-4030, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32651756

ABSTRACT

The N-methyl-D-aspartate (NMDA) receptor plays an essential role in glutamatergic transmission and synaptic plasticity and researchers are seeking for different modulators of NMDA receptor function. One possible mechanism for its regulation could be through adjacent membrane proteins. NMDA receptors coprecipitate with Na,K-ATPase, indicating a potential interaction of these two proteins. Ouabain, a mammalian cardiotonic steroid that specifically binds to Na,K-ATPase and affects its conformation, can protect from some toxic effects of NMDA receptor activation. Here we have examined whether NMDA receptor activity and downstream effects can be modulated by physiological ouabain concentrations. The spatial colocalization between NMDA receptors and the Na,K-ATPase catalytic subunits on dendrites of cultured rat hippocampal neurons was analyzed with super-resolution dSTORM microscopy. The functional interaction was analyzed with calcium imaging of single hippocampal neurons exposed to 10 µM NMDA in presence and absence of ouabain and by determination of the ouabain effect on NMDA receptor-dependent long-term potentiation. We show that NMDA receptors and the Na,K-ATPase catalytic subunits alpha1 and alpha3 exist in same protein complex and that ouabain in nanomolar concentration consistently reduces the calcium response to NMDA. Downregulation of the NMDA response is not associated with internalization of the receptor or with alterations in its state of Src phosphorylation. Ouabain in nanomolar concentration elicits a long-term potentiation response. Our findings suggest that ouabain binding to a fraction of Na,K-ATPase molecules that cluster with the NMDA receptors will, via a conformational effect on the NMDA receptors, cause moderate but consistent reduction of NMDA receptor response at synaptic activation.


Subject(s)
Ouabain/pharmacology , Receptors, N-Methyl-D-Aspartate/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Animals , Calcium/metabolism , Down-Regulation/drug effects , Hippocampus/cytology , Models, Biological , N-Methylaspartate/metabolism , Neurons/cytology , Neurons/drug effects , Neurons/metabolism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Binding/drug effects , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , src-Family Kinases/metabolism
3.
Biochimie ; 170: 128-139, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31945397

ABSTRACT

In search of the compounds that interfere with amyloid transformation of alpha-synuclein, 9 natural and synthetic cinnamic acid derivatives were studied. They are structurally similar to a half of curcumin, which has pronounced anti-aggregatory and anti-amyloid effects. We have shown that some of these derivatives prevent ovine prion protein amyloidization. Subsequently, thioflavin T binding assay showed that 3 out of 9 studied compounds effectively prevented amyloid transformation of alpha-synuclein with IC50 of 13, 50 and 251 µM. Molecular modeling approach revealed possible binding sites of the three selected ligands with alpha-synuclein fibrils, while monomeric alpha-synuclein does not bind to the ligands according to experimental results. This led us to believe that compounds may act by changing the structure of primary aggregates, preventing the formation of full-length fibrils. The inhibiting effect of the ligands on aggregation of alpha-synuclein was further confirmed by monitoring aggregation via turbidimetry, susceptibility to proteolytic cleavage, changes in beta-sheet content, and scanning ion-conductance microscopy. Studied derivatives were not cytotoxic, and, moreover, two studied compounds (ferulic and 3,4-dimethoxycinnamic acid) are found in plant sources and are natural metabolites present in human blood, so they can be promising candidate drugs for synucleinopathies, including Parkinson's disease.


Subject(s)
Amyloid/chemistry , Amyloid/metabolism , Biological Products/metabolism , Cinnamates/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/metabolism , Biological Products/chemistry , Cinnamates/chemistry , Humans , Molecular Docking Simulation , Protein Conformation
4.
Curr Med Chem ; 27(13): 2040-2058, 2020.
Article in English | MEDLINE | ID: mdl-29848267

ABSTRACT

BACKGROUND: Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) is a unique enzyme that, besides its main function in glycolysis (catalysis of glyceraldehyde-3-phosphate oxidation), possesses a number of non-glycolytic activities. The present review summarizes information on the role of oxidative stress in the regulation of the enzymatic activity as well as non-glycolytic functions of GAPDH. METHODS: Based on the analysis of literature data and the results obtained in our research group, mechanisms of the regulation of GAPDH functions through the oxidation of the sulfhydryl groups in the active site of the enzyme have been suggested. RESULTS: Mechanism of GAPDH oxidation includes consecutive oxidation of the catalytic Cysteine (Cys150) into sulfenic, sulfinic, and sulfonic acid derivatives, resulting in the complete inactivation of the enzyme. The cysteine sulfenic acid reacts with reduced glutathione (GSH) to form a mixed disulfide (S-glutathionylated GAPDH) that further reacts with Cys154 yielding the disulfide bond in the active site of the enzyme. In contrast to the sulfinic and sulfonic acids, the mixed disulfide and the intramolecular disulfide bond are reversible oxidation products that can be reduced in the presence of GSH or thioredoxin. CONCLUSION: Oxidation of sulfhydryl groups in the active site of GAPDH is unavoidable due to the enhanced reactivity of Cys150. The irreversible oxidation of Cys150 is prevented by Sglutathionylation and disulfide bonding with Cys154. The oxidation/reduction of the sulfhydryl groups in the active site of GAPDH can be used for regulation of glycolysis and numerous side activities of this enzyme including the induction of apoptosis.


Subject(s)
Oxidative Stress , Catalysis , Glyceraldehyde-3-Phosphate Dehydrogenases , Glycolysis , Oxidation-Reduction
5.
Phytother Res ; 31(7): 1046-1055, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28509424

ABSTRACT

Neurodegenerative diseases are associated with accumulation of amyloid-type protein misfolding products. Prion protein (PrP) is known for its ability to aggregate into soluble oligomers that in turn associate into amyloid fibrils. Preventing the formation of these infective and neurotoxic entities represents a viable strategy to control prion diseases. Numerous attempts to find dietary compounds with anti-prion properties have been made; however, the most promising agent found so far was curcumin, which is poorly soluble and merely bioavailable. In the present work, we identify 3,4-dimethoxycinnamic acid (DMCA) which is a bioavailable coffee component as a perspective anti-prion compound. 3,4-Dimethoxycinnamic acid was found to bind potently to prion protein with a Kd of 405 nM. An in vitro study of DMCA effect on PrP oligomerization and fibrillization was undertaken using isothermal titration calorimetry (ITC), dynamic light scattering (DLS) and circular dichroism (CD) methodologies. We demonstrated that DMCA affects PrP oligomer formation reducing the oligomer content by 30-40%, and enhancing SH-SY5Y cell viability treated with prion oligomers. Molecular docking studies allowed to suggest a site where DMCA is able to bind stabilizing PrP tertiary structure. We suggest that DMCA is a perspective dietary compound for prophylaxis of neurodegenerative diseases that needs further research. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Cinnamates/chemistry , Prion Proteins/antagonists & inhibitors , Prions/antagonists & inhibitors , Binding Sites , Molecular Docking Simulation , Prion Diseases
SELECTION OF CITATIONS
SEARCH DETAIL
...