Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 599: 198-206, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33945968

ABSTRACT

Synthetic biology pursues the understanding of biological processes and their possible mimicry with artificial bioinspired materials. A number of materials have already been used to mimic the active site of simple redox proteins, including nanosized iron oxides due to their redox properties. However, the mimicry of membrane redox protein complexes is still a challenge. Herein, magnetic iron oxide nanoparticles (NPs), incorporated as non-proteinaceous complexes III and IV in a mitochondrial model membrane, catalyze electron transfer (ET) similarly to the natural complexes towards cytochrome c. The associated molecular mechanism is experimentally proven in solution and in a Langmuir-Blodgett film. A direct and entropy-driven ET, with rate constant of 2.63 ± 0.05Lmol-1 at 25 °C, occurs between the iron sites of the NPs and the cytochrome c heme group, not affecting the protein secondary and tertiary structures. This process requires an activation energy of 40.2 ± 1.5 kJ mol-1 resulting in an overall Gibbs free energy of -55.3 kJ mol-1. Furthermore, the protein-NP system is governed by electrostatic and non-polar forces that contribute to an associative mechanism in the transition state. Finally, the incorporated NPs in a model membrane were able to catalyze ET, such as the natural complexes in respiratory chain. This work presents an experimental approach demonstrating that inorganic nanostructured systems may behave as embedded proteins in the eukaryotic cells membrane, opening the way for more sophisticated and robust mimicry of membrane protein complexes.


Subject(s)
Cytochromes c , Electrons , Catalysis , Electron Transport , Oxidation-Reduction
2.
ACS Appl Mater Interfaces ; 11(20): 18053-18061, 2019 May 22.
Article in English | MEDLINE | ID: mdl-30964981

ABSTRACT

The controlled assembly of metal nanoparticles into ordered structures interacting with biological molecules is an emerging concept in surface science. Here, bare magnetite nanoparticles (Fe3O4-NPs) were employed as nanoadhesives to capture hollow metallic nanostructures (Au-Ag nanocages) from aqueous suspensions, and these coupled nanostructures were patterned onto various types of substrate via magnetolithography. Microwires of Au-Ag nanocages patterned onto an Au substrate behaved as optical antennas, providing a plasmonic enhancement exploited in surface-enhanced infrared absorption spectroscopy (SEIRAS) to investigate the proteins cytochrome c, bilirubin oxidase, alcohol dehydrogenase, bovine serum albumin, and glucose oxidase. Chemical maps containing more than 4000 spectra, acquired within only 2 min with a focal plane array detector, indicate that proteins were adsorbed along the microwires with their secondary structure preserved according to the spatial distribution of their amide groups. We believe there are significant practical aspects of the methodology proposed here to develop an alternative label-free assay for investigating biological molecules.


Subject(s)
Gold/chemistry , Magnetite Nanoparticles/chemistry , Oxidoreductases/chemistry , Serum Albumin, Bovine/chemistry , Silver/chemistry , Animals , Cattle , Nanoparticles , Spectrophotometry, Infrared
3.
Lab Chip ; 15(8): 1835-41, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25723569

ABSTRACT

Magnetite decorated with gold nanoparticles (Fe3O4-AuNPs) is a ferrimagnetic material with unprecedented applications in immunosensors, as a contrast agent for imaging diagnosis, and for the photothermal ablation of tumor cells. Here, we show the preparation of controlled amounts of Fe3O4-AuNPs without organic solvents, surfactants, or heat treatment. For this, we have developed a customized natural-rubber-based microfluidic device (NRMD) as a flexible lab-on-a-chip for the decoration of Fe3O4 with AuNPs. With a novel NRMD configuration, monodisperse Fe3O4-NPs (ϕ = 10 nm) decorated with AuNPs (ϕ = 4 nm) were readily obtained. The AuNPs were homogenous in terms of their size and their distribution on the Fe3O4-NP surfaces. Furthermore, the lab-on-a-chip was projected with an internal system for magnetic separation, an innovation in terms of aqueous/carrier phase separation. Finally, the nanomaterials produced with this NRMD are free of organic solvents and surfactants, allowing them to be used directly for medical applications.

4.
Phys Chem Chem Phys ; 16(17): 8012-8, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24647862

ABSTRACT

This paper reports the magnetic control of nanoparticle collisions on gold ultramicroelectrode surface. Magnetite nanoparticles with diameters of 10 nm and modified with Prussian blue (Fe3O4-NPs-PB) were directed by gravitational force on the electrode surface, and spikes in current-time transients were observed. By modulating a magnetic field parallel to the electrode surface, the number of nanoparticle collisions and the nanoparticle positions could be controlled.


Subject(s)
Ferrocyanides/chemistry , Gold/chemistry , Magnetite Nanoparticles/chemistry , Magnetic Fields , Magnetite Nanoparticles/ultrastructure , Microelectrodes , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...