Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 708: 135000, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31791776

ABSTRACT

Inspired by the presence of anthropogenic organic matter in highly fertile Amazonian Dark Earth (ADE), which is attributed to the transformation of organic matter over thousands of years, we explored hydrothermal carbonization as an alternative for humic-like substances (HLS) production. Hydrothermal carbonization of sugarcane industry byproducts (bagasse and vinasse) in the presence and absence of H3PO4 afforded HLS, which were isolated and compared with humic substances (HS) isolated from ADE in terms of molecular composition and maize seed germination activity. HLS isolated from sugarcane bagasse hydrochar produced in the presence or absence of H3PO4 comprised both hydrophobic and hydrophilic moieties, differing from other HLS mainly in terms of phenolic content, while HLS isolated from vinasse hydrochar featured hydrophobic structures mainly comprising aliphatic moieties. Compared to that of HLS, the structure of soil-derived HS reflected an increased contribution of fresh organic matter input and, hence, featured a higher content of O-alkyl moieties. HLS derived from lignocellulosic biomass were rich in phenolics and promoted maize seed germination more effectively than HLS comprising alkyl moieties. Thus, HLS isolated from bagasse hydrochar had the highest bioactivity, as the presence of amphiphilic moieties therein seemed to facilitate the release of bioactive molecules from supramolecular structures and stimulate seed germination. Based on the above results, the hydrothermal carbonization of lignocellulosic biomass was concluded to be a viable method of producing amphiphilic HLS for use as plant growth promoters.


Subject(s)
Germination , Zea mays , Carbon , Plant Extracts , Seeds
2.
Environ Sci Pollut Res Int ; 26(9): 9137-9145, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30715701

ABSTRACT

Hydrothermal carbonization transforms biomass into value-added material called hydrochar. The release of nutrients (P, N, Ca, Mg, and K) and organic carbon (TOC) from hydrochar in different extractive solutions was investigated in this study. Two sets of hydrochar were produced: (i) hydrochar prepared from sugarcane bagasse and vinasse mixture (BV-HC) and (ii) hydrochar prepared by the addition of H3PO4 to this mixture (BVA-HC). Both hydrochar types released significative amounts of nutrient and organic carbon, mainly Ca (5.0 mg g-1) in the mixture (KCl, K2SO4, NaOH, 1:1:1) extractive solution and TOC (72.6 mg g-1) in the NaOH extractive solution, for BV-HC. Nutrient release was influenced by pH and ionic strength. The release of P, Ca, and Mg was affected by the presence of insoluble phosphate phases in BVA-HC. The release of nutrients P, N, Ca, Mg, and K and organic carbon demonstrated that hydrochar has potential for soil application purposes.


Subject(s)
Carbon/analysis , Industrial Waste/analysis , Nutrients/analysis , Plant Extracts/analysis , Saccharum/chemistry , Waste Products/analysis , Calcium/analysis , Calcium/isolation & purification , Carbon/isolation & purification , Cellulose/chemistry , Nutrients/isolation & purification , Plant Extracts/isolation & purification , Soil/chemistry
3.
Bioresour Technol ; 237: 213-221, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28433583

ABSTRACT

In this study, nutrients were immobilized on the hydrochars obtained by hydrothermal carbonization (HTC) of a vinasse and sugarcane bagasse mixture, in the presence of acid, base and salt additives at temperatures of 150, 190 and 230°C. The increase in temperature caused higher immobilization of Ca, Mg, K, N, Cu, Mn, Zn, B, P and Fe in all hydrochars produced. H3PO4 and NaOH immobilized higher amounts of P, Mg and Mn, while Ca was immobilized in higher quantities in the presence of H3PO4 and (NH4)2SO4. The addition of H2SO4, H3PO4 and (NH4)2SO4 was responsible for an increased immobilization of P, N, Ca, Mg and K. The immobilization of B, not present in the starting raw material, was possible with the addition of H3BO3. The results showed that it is possible to alter the reaction medium to immobilize nutrients on hydrochars produced from vinasse and sugarcane bagasse, for agricultural applications.


Subject(s)
Refuse Disposal , Saccharum , Nitrogen , Phosphorus , Temperature
4.
Environ Technol ; 36(1-4): 149-59, 2015.
Article in English | MEDLINE | ID: mdl-25413109

ABSTRACT

The objective of this work was to investigate the interaction of arsenic species (As(III) and As(V)) with tropical peat. Peat samples collected in Brazil were characterized using elemental analysis and 13C NMR. Adsorption experiments were performed using different concentrations of As with peat in natura and enriched with Fe or Al, at three different pH levels. Peat samples, in natura or enriched with metals, were analysed before and after adsorption processes using Fourier transform infrared spectroscopy (FTIR) spectroscopy. The adsorption kinetics was evaluated, and the data were fitted using the Langmuir and Freundlich models. The results showed that interaction between As and peat was dependent on the levels of organic matter (OM) and the metals (Fe and Al). As(III) was not adsorbed by in natura peat or Al-enriched peat, although small amounts of As(III) were adsorbed by Fe-enriched peat. Adsorption of As(V) by the different peat samples ranged from 21.3 to 52.7 µg g(-1). The best fit to the results was obtained using the pseudo-second-order kinetic model, and the adsorption of As(V) could be described by the Freundlich isotherm model. The results showed that Fe-enriched peat was most effective in immobilizing As(V). FTIR analysis revealed the formation of ternary complexes involving As(V) and peat enriched with metals, suggesting that As(V) was associated with Al or Fe-OM complexes by metal bridging.


Subject(s)
Aluminum/chemistry , Arsenic/isolation & purification , Iron/chemistry , Organic Chemicals/chemistry , Soil Pollutants/chemistry , Soil Pollutants/isolation & purification , Adsorption , Arsenic/chemistry , Environmental Restoration and Remediation , Soil/chemistry , Ultrafiltration/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...